Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий адсорбция

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]


    В работе [724] высказывается мнение, что соосаждение малых количеств плутония на фториде лантана не применимо для полного отделения от U(VI). Адсорбция шестивалентного урана подавляется добавлением циркония. Для уменьшения адсорбции в этих случаях также рекомендуется добавлять малые количества соосадителя ( 50 мкг/мл лантана). [c.277]

    Адсорбция из раствора сильной кислоты. Ряд металлов, обладающих высокой валентностью, т. е. находящихся в наибольшей степени окисления элемента, обычно способны сильно адсорбироваться при pH 2 или ниже, а некоторые элементы могут адсорбироваться даже из раствора сильной кислоты. Например, Ре + адсорбируется при pH 2. Сурьма, молибден, вероятно, ванадий, тантал, ниобий, торий, цирконий, уран, плутоний и протактиний адсорбируются при pH О или ниже. [c.929]

    Адсорбция натрия и циркония фосфатами циркония. [c.176]

    В оптимальных условиях осаждения сульфатов мешают сульфид-, сульфит-, тиосульфат-, хромат-, вольфрамат-, ванадат-, оксалат-, фторосиликат-, нитрит- и фосфат-ионы [835]. Осаждение возможно в присутствии галогенид-, роданид-, нитрат- и арсенат-ионов. Присутствие хлорид-ионов не повышает растворимости осадка, но приводит к адсорбции С1-ионов на поверхности осадка [786]. Несмотря на то, что в работе [835] предложены многочислен ные методики определения сульфатов в чистых растворах, в присутствии фосфатов, в никельсодержащих материалах, двуокиси циркония, водах, метиленовой сини и других объектах, бензидин как осадитель для сульфатов применения не нашел. [c.63]

    Адсорбция комплексов циркония с аскорбиновой кислотой на сильноосновных анионитах [2980]. [c.365]

    Были проведены исследования по дезактивации каталитических систем олигомеризации твердыми сорбентами. Выбор режимов адсорбции компонентов катализаторов и последующей регенерации сорбента проводили на искусственных смесях, содержащих каталитические компоненты и олефины в концентрациях, сходных с их концентрацией в реакционной массе. В табл. 2.7 приведены результаты дезактивации отработанного катализатора олигомеризации на специальных сухих сорбентах. После дезактивации в реакционной массе отсутствовали ионы алюминия и циркония, а хлор-ион иногда присутствовал в концентрации 10 моль/л. Разработанный метод безводной дезактивации катализатора, по данным хроматографического и ИК-спектроскопического анализов продуктов реакции, не влияет на качество получаемых олефинов. Об этом свидетельствуют также данные термостабильности олефинов. [c.92]


Рис. 10. Спектр двуокиси циркония [1) и его изменение при адсорбции ацетопа (2) и пиридина (3) Рис. 10. Спектр двуокиси циркония [1) и его изменение при адсорбции <a href="/info/334046">ацетопа</a> (2) и пиридина (3)
    В последнее время О. М. Оранской и мною было исследовано взаимодействие молекул ацетона и пиридина со структурными гидроксилами окислов циркония, титана и магния. При адсорбции ацетона и пиридина на двуокиси циркония (см. рис. 10) высокочастотная полоса ОН-групп при 3750 см уменьшается и в спектре появляется широкая полоса возмущенных гидроксилов в области 3700—2500 см и полосы СН-групп адсорбированных молекул около 3000 см . В случае ацетона максимум полосы возмущенных ОН-групп лежит при 3550 в случае пиридина он попадает в область 3100—2800 смГ и положение его трудно определить из-за наложения полосы СН-групп пиридина. Откачка при 120° С недостаточна для восстановления полосы 3750 что указывает на образование прочной водородной связи между группами 2г — ОН и адсорбированными молекулами. Откачка при 250° С приводит к постепенному уменьшению полосы возмущенных ОН-групп и росту полосы 3750 сл .  [c.127]

    Метод радиоизотопных меток был использован Балашовой, Ивановым и Ковбой [288] для изучения переходов и перераспределения таких меченых элементов, как кадмий, железо и само серебро, при зарядке и разрядке Zn/Ag- аккумуляторов. Подобные методы применялись для изучения адсорбции и электрохимического разделения радиоактивных церия и празеодима [14], а также радиоизотопов циркония и ниобия. [c.501]

    Число кислотных центров в упомянутой работе [212] (см. также [213—216]) определялось титрованием бутиламином из раствора гептана. Для некоторых изученных реакций была найдена линейная связь между каталитической активностью и числом кислотных центров, определенных по предельной адсорбции бутила-мина. На рис. 29 изображена зависимость каталитической активности в реакциях дегидратации этилового и изопропилового спиртов от числа кислотных групп на цирконий-силикатных катализато- [c.67]

    В последнее время явления адсорбции и ионного обмена используют для создания новых хроматографических систем на бумаге с адсорбционным и ионообменным механизмами. Например, ионообменные свойства бумаги усиливают специальной обработкой ее [6] (окислением, карбоксилированием) непосредственно пропиткой бумаги ионообменными смолами [7] или неорганическими ионообменниками фосфатом циркония [8] и т. д. [c.359]

    Другой пример специфичности физической адсорбции показан на рис. 112 и ИЗ, взятых у Пирса и Рахиса [ ]. На рис. 112 изображены изотермы адсорбции паров воды при 99,4° на четырех ионных адсорбентах окиси тория, окиси алюминия, окиси вольфрама и окиси циркония. Сплошные кривые изображают объем адсорбированного газа на 1 сж адсорбента, пунктирные кривые — адсорбированный объем на 1 г адсорбента. На рис. ИЗ изображены изотермы адсорбции спирта на тех же четырех адсорбентах при тех же температурах. При давлении 140 мм ЪтО является [c.450]

    Осаждение органическими основаниями (пиридин, уротропин и др.). Остроумов [218] рекомендует осаждать ионы ряда металлов, в том числе и циркония, пиридином (константа ионизации 1,6-10 ). Пиридин позволяет легко регулировать величину pH раствора и маскирует некоторые ионы. Введение значительных количеств хлорида аммония в раствор резко снижает адсорбцию образующимся осадком тех ионов, которые дают комплексы с пиридином. Прибавление большого количества хлорида аммония способствует более полному осаждению гидроокиси из сернокислого раствора. Осаждение пиридином проходит более интенсивно при нагревании раствора. [c.54]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]


    Отрицательный заряд на поверхности кремнезема может измениться на противоположный в результате адсорбции на поверхности избыточного количества вещества, обладающего положительным зарядом. Обращение зарядов в коллоидных системах давно известно, но концентрированный кремнеземный золь такого типа с частицами, обладающими положительным зарядом на поверхности, впервые был выделен Александером и Болтом [424]. Авторы определили, что покрытия оксидами поливалентных металлов могут быть нанесены на всю поверхность частиц и обеспечить максимальную устойчивость золя. Сюда относятся оксиды трех- и четырехвалентных металлов, наиример алюминия, хрома, галлия, титана и циркония. Предпочтение следует отдать золю с содержанием 26 % кремнезема и 4 % АЬОз, в котором положительно заряженные частицы сопровождаются нротивоионами — хлорид-ионами. Для изготовления такого продукта подкисленный золь кремнезема смешивали с основной солью металла, содержавшей чрезвычайно небольшие коллоидные частицы оксида металла, которые [c.564]

    Многие другие катионообменники можно приготовить с помощью методов осаждения, аналогичных применявшимся для получения фосфата циркония, наиример фосфаты тория и титана, арсенат, вольфрамат и молибдат циркония. Фосфат тория получали также [54] при нагревании раствора нитрата с силикагелем и последующей адсорбции фосфата на образовавшемся таким образом силикате тория. Эти ионообменники по устойчивости уступают фосфату циркония. Так, например, фосфат титана легко гидролизуется при 200° в 1 М растворе ЫН4МОз [55], а молибдат и вольфрамат циркония заметно гидролизуются в почти нейтральных растворах при комнатной температуре. Фосфат тантала [55] сильно гидролизуется в щелочном растворе, а после нагревания ири 200° в щелочной среде он полностью теряет свою емкость, которая в кислом растворе составляет [c.145]

    Переработка отходов от Редокс-процесса отличается главным образом тем, что кристаллизация квасцов для отделения цезия производится в начале процесса. Короткоживущие продукты деления выделяют отдельно из свежеоблученного урана. Из раствора урана, после извлечения йода и ксенона, выделяют цирконий и ниобий адсорбцией на силикагеле, затем отделяют уран экстракцией трибутилфосфатом. Далее отделяют редкие земли от щелочных земель соосаждением с оксалатом лаптана и разделяют обе группы на индивидуальные продукты деления при помощи ионного обмена. Из короткоживущих изотопов получают МЬ , Ва , [c.23]

    Н. Е. Третьяковым, О. М. Оранской и мною исследовании спектров адсорбированных бензонитрила и метилметакрилата (ММА), обнаруживают также окислы магния, цинка, титана и циркония. При адсорбции бензонитрила на этих окислах наблюдается увеличение частоты колебания связи С = N, характерное для донорно-акцепторного взаимодействия [77]. Степень этого увеличения частоты,котораяможег служить мерой,электроноакцепторной способности адсорбционных центров при адсорбции на окиси алюминия и окиси титана, приблизительно совпадает с соответствующей величиной для галогенидов алюминия и титана. Спектр ММА претерпевает при адсорбции изменения, указывающие на образование донорно-акцепторной связи между атомами металла окислов и карбонильной группой этой молекулы. На рис. 15 в качестве примера показан снектр ММА, адсорбированного на окиси магния. В присутствии паров ММА спектр адсорбата представляет собой наложение спектров слабо и прочно адсорбированного ММА. После откачки на поверхности остается ММА, образующий донорно-ак-цепторную связь с атомами магния. Характерной особенностью спектра ММА в этом случае является присутствие сильно пониженной частоты [c.128]

    Химические взаимодействия различных органических соединений (как низкомолекулярных, так и полимеров) с металлами могут быть проиллюстрированы результатами исследований коллоидных металлов и металлополимерных материалов [73—76]. Исследовано хемосорбционное взаимо 1 ействие металлов с фенил-гидразином, оксихинолином, хинином, жирными кислотами. Было показано [75], что адсорбция хинина на поверхности частиц вольфрама, о-оксихинолина и фенилгидразипа — на поверхности частиц молибдена и циркония является процессом в основном необратимым. Гистерезис адсорбции в указанных системах становится значительным. Значения теплот адсорбции также свидетельствуют о том, что в данном случае протекает хемосорбционный процесс, наиболее отчетливо выраженный при адсорбции фенил-гидразина и о-оксихинолина на молибдене и вольфраме (теплота адсорбции 10—15 ккал/моль). [c.35]

    Несомненно, что после установления равновесия с жидкой водой или ее парами на поверхности двуокиси циркония образуются хемосорбированные гидроксильные группы [87, 88, 90]. Некоторые гидроксильные группы удаляются уже при 650 К [88], но завершается дегидратация только около 1170 К [90]. Стереохимия и реакционная способность гидроксилированной поверхности двуокиси циркония еще не исследованы. Тем не менее некоторое представление об этих свойствах дает структура тетрагональной модификации, показанная на рис. 10. Можно ожидать, что в реальных условиях на поверхности находятся низкоиндексные грани (111) (см. на рис. 10 грань с атомами циркония А, В и С), несущие, по-видимому, надповерхностный слой из анионов, гидроксильных групп и вакансий следует ожидать также, что общие закономерности в отношении химических свойств для такой поверхности будут почти такими же, как и для других рассмотренных систем. Кислотность поверхности двуокиси циркония исследовали, используя адсорбцию пиридина и ИК-спектроскопию [92]. В результате были обнаружены льюисовские кислотные центры, но они, по-види-мому, имеют меньшую кислотность, чем в случае окиси алюминия или двуокиси титана. [c.72]

    В серии работ Платонова с соавт. [163, 164] методами ИК- и ЯМР-спектроскопии, нарушенного полного внутреннего отражения и потенциала течения детально изучена адсорбция различных образцов поливинилового спирта, полиоксиэтилена и метилцеллюлозы на поверхности дисперсных оксидов кремния, алюминия, цинка, титана, марганца, железа, никеля, циркония. Показано, что для всех перечисленных оксидов, за исключением 5102, адсорбция полимера возрастает по мере повышения pH среды, тогда как для кремнезема наблюдается обратная зависимость. Для АЬОз, 2пО и N10 с высоким значением pH точки нулевого заряда (составляющей соответственно 8,6 9,8 и 10,1 единиц pH) величины адсорбции повышаются вплоть до pH близких к рНт, н. 3- На основании этих данных сделано предположение, что в случае указанных оксидов адсорбция полимера осуществляется за счет образования водородных связей между электронейтральными кислотно-основными центрами поверхности и ОН-группами полимера. В то же время эта модель не согласуется с опытными данными, полученными для оксидов с низкими рН. , з — Мп02, 1п02 и Т102 (рНт. 3 = 3,0 4,0 и 4,5), так как для этих систем обна- [c.164]

    Необходимо добавить, что имеются указания на зависимость адсорбции ионов кристаллической решетки от степени измельчения твердого вещества или, возможно, от степени совершенства граней кристалла. Так, Жюльенисследовал бромид серебра, Фервей — окислы титана и циркония, Бьюкенен и Хейман —сульфат бария, и все они указывают, что грубозернистые осадки имеют более отрицательный характер, чем мелкие кристаллы. [c.171]

    При наличии в электролите активирующих агентов, например хлорид-ионов, при определенном значении потенциала фпит пассивное состояние нарушается, процесс анодного растворения ускоряется. Объясняется это тем, что по мере смещения потенциала в положительную сторону усиливается адсорбция хлорид-ионов. Поскольку степень покрытия поверхности кислородом неодинакова, в местах, где имеются дефекты в структуре окисной пленки, начинают преимущественно адсорбироваться хлорид-ионы, и вместо пассивирующего окисла образуется галогенид, обладающий хорошей растворимостью. Начинается питтинговая коррозия. Этому виду коррозии особенно подвержены нержавеющие стали и другие пассивирующиеся сплавы алюминий, титан, цирконий. [c.14]

    С использованием фосфатов циркония было осуществлено разделение рубидия и цезия [323]. Емкость фосфата циркония как адсорбента равна 5 мг-зкв на 1 г сухого веса [323]. С уменьшением отношения г + РОд " катионообменные свойства фосфатов меняются на анионообменные. Подобный эффект наблюдается в целочной среде, где фосфаты цир рония способны адсорбировать анионы. Злоб н [П8] изучал адсорбцию иттрия и циркония на фосфате циркония, приготовленном по методу Ларсена [589], в зависимости от их концентрации и pH растворов. Фосфат циркония можно применить для-удаления иттрия и циркония из кислых растворов (pH 1—1,5). [c.15]

    В кислой среде уротропин медленно разлагается на формальдегид и аммиак при этом pH раствора будет повышаться до 5,5—6. Чистый водный раствор уротропина имеет pH 7—7,5. Цирконий осаждается в слабокислой среде, следовательно, адсорбция катионов осадком уменьшается [693]. Слабокислый раствор разбавляют до 300 мл, прибавляют 10 г ЫН4С1, нагревают до кипения и при непрерывном помешивании медленно по каплям прибавляют 10%-ный раствор уротропина с избытком в 2—3 мл по сравнению с требуемым количеством. Раствор нагревают до кипения и дают возможность осадку отстояться на горячей водяной бане. Затем его отфильтровывают горячим и промывают 2%-ным раствором нитрата аммония. Фильтр с осадком озоляют, прокаливают до 2гОг и взвешивают. [c.54]

    С целью улучшения свойств осадка фосфата циркония и уменьшения адсорбции примесей применяют осаждение фосфата циркония из гомогенных растворов [77], для чего используют триэтил-фосфат [804], триамилфосфат [805] и метафосфорную кислоту 527]. В последнем случае цирконийфосфат медленно осаждается при комнатной температуре добавлением метафосфорной кислоты к 3,6 N сернокислому раствору, содержащему около 200 мг ZrOg. Раствор с осадком должен стоять 12 час. для достижения полноты осаждения. [c.61]


Смотреть страницы где упоминается термин Цирконий адсорбция: [c.426]    [c.137]    [c.203]    [c.434]    [c.189]    [c.92]    [c.97]    [c.1421]    [c.128]    [c.141]    [c.129]    [c.590]    [c.128]    [c.303]    [c.262]    [c.815]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте