Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

алкилирование кислотность

    Процесс алкилирования изобутана олефинами, преимущественно бутиленами, разработанный с применением в качестве катализатора серной кислоты и позднее фтористого водорода, был быстро внедрен в промышленность. Первые промышленные установки серно-кислотного алкилирования были введены в эксплуатацию в конце 30-х годов, а фтористоводородного алкилирования — в 1942 г. Целевым продуктом процесса был вначале исключительно компонент авиационного высокооктанового бензина, и лишь в послевоенные годы алкилирование стали использовать для улучшения моторных качеств товарных автомобильных бензинов. [c.80]


    Следует упомянуть о другом технологическом процессе, который, как сообщают, был позднее использован фирмой Копперс [2]. В этом процессе применяется кислотный алюмосиликатный катализатор [18, 22] при условиях реакции, аналогичных режиму, применявшемуся при использовании катализатора иОР сравнимыми получаются и выходы при одинаковом соотношении олефинов ароматический углеводород. Быть может, наиболее интересными особенностями этого катализатора являются его стабильность и легкость регенерации при помощи регулируемого сжигания. Поэтому процесс желателен для реакции деалкилирования тяжелых алкилатов, чтобы образующийся бензол возвращался в систему алкилирования. [c.495]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]

    В процессе в качестве катализатора применяют 96—98 %-ную, считая на моногидрат, серную кислоту. Расход катализатора на 1 т алкилата зависит от содержания олефинов в сырье для пропиленового сырья — 190 кг, для бутиленового сырья — от 80 до 100 кг, для амиленового сырья — 120 кг. Объемное соотношение кислота углеводороды поддерживается в реакционной зоне от 1 1 до 2 1. Поскольку кислотные свойства серной кислоты в растворе углеводородов значительно выше, чем в воде, снижение активности катализатора при алкилировании будет зависеть от разбавления ее водой. Поэтому нужна тщательная осушка сырья перед подачей в зону реакции. Концентрация кислоты понижается также за счет накопления в ней высокомолекулярных соединений. Применение более концентрированной кислоты приводит к окислению углеводородов, осмолению продуктов, выделению диоксида серы и снижению выхода алкилата. При меньшей концентрации идет реакция полимеризации олефинов с образованием разбавленной серной кислоты, корродирующей аппаратуру. В серной кислоте должны отсутствовать примеси, такие, как соединения железа, например сульфат трехвалентного железа, снижающие эффективность процесса. [c.60]


    Катализаторы С — алкилирования. Из всех возможных кислотных катализаторов в промышленных процессах алкилирования применение получили только серная и фтористоводородная кисло — ты, некоторые свойства которых приведены ниже (для 100 % —ных кис/от)  [c.139]

    Первой стадией О— алкилирования метанола изобутеном является протонирование последнего гидрид ионом кислотного катализатора  [c.148]

    Сырьем для процесса алкилирования является изобутан и бутиленовая фракция с нефтеперерабатывающего завода [150]. Бутиленовую фракцию очищают от сернистых соединений, после чего смешивают с изобутаном. Охлажденная до 7° смесь изобутана и бутиленовой фракции освобождается от воды отстаиванием и поступает в реактор, где интенсивно перемешивается с серной кислотой, имеющей концентрацию 98—99%. Продукты реакции вместе с серной кислотой из реактора поступают в кислотный отстойник, в котором отделяется серная кислота, направляемая снова в реактор. [c.133]

    Если при рассмотрении данного вопроса иметь в виду реакцию алкилирования изонарафинов олефинами, для протекания которой требуется сильная кислотность [6], то центрам II вряд ли можно отвести сколько-нибудь заметную роль. Так, сильно декатионированные катализаторы, в которых, по-видимому, достаточное количество центров типа П, представляют собой плохие катализаторы алкилирования [7]. То же самое можно сказать и в отношении центров III. [c.350]

    Активность катализатора алкилирования в решающей степени зависит от двух его свойств кислотности и способности растворять углеводороды, в частности изобутан. [c.68]

    Характер изменения функции кислотности Гаммета (см. рис. 7) показывает, что активность серной кислоты в значительной степени зависит от содержания в ней воды и резко снижается с увеличением концентрации кислоты. Это особенно заметно в области высоких концентраций. Поскольку функция кислотности серной кислоты в растворе углеводо родов намного больше, чем в воде, снижение активности катализатора при алкилировании будет в первую очередь определяться его разбавлением водой и в меньшей мере растворением в нем высокомолекулярных углеводородов — продуктов побочных реакций. [c.72]

    Сильные кислоты способны отдавать протоны реагентам и принимать их обратно. К этому классу относятся обычные кислоты, галоиды алюминия, три< орид бора. Аналогичным механизмом каталитического воздействия обладают такие катализаторы, как алюмосиликаты, гамма-окись алюминия, магнийсили-каты, цирконийсиликат и подобные соединения, хотя вопрос о кислотном характере указанных соединений является спорным. Эти реакции происходят с образованием карбоний-ионного комплекса, возникающего путем перехода протона от катализатора к свободной электронной паре в органическом реагенте. В зависимости от условий реакции карбоний-ионный комплекс может взаимодействовать по реакциям алкилирования, крекинга, циклизации, перераспределения водорода, изомеризации, полимеризации и др. [c.312]

    Низкая избирательность кислотных катализаторов, обычно используемых при крекинге, обусловливает широкое протекание побочных реакций, таких, как изомеризация, перенос водорода, пере-алкилирование ароматических углеводородов и циклизация. [c.123]

    В качестве наиболее типичного примера реакций, протекающих по механизму общего кислотного катализа, являютс5с каталитические превращения углеводородов нефти, имеющие место в таких важных в нефтепереработке процессах, как катал1стический крекинг, изомеризация и алкилирование. [c.91]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    О — Алкилированием принято называть реакции введения алкильной группы по углерод—кислородной связи органического вещества. В то же время реакцию синтеза МТБЭ можно отнести и к разновидности реакций этерификации — образованию простых или сложных эфиров из спиртов и органических кислот (изобутен oблa ает слабой кислотностью, равной -3,0 по Гаммету). [c.147]


    Карбоний-ион с пептакоординированным атомом углерода, образовавшийся из изобутана па первой стадии алкилирования, предстанляет собой, по-видимому, довольно лаоряжепную структуру, от которой льюисовский кислотный центр в состоянии оторвать два водородных атома совместно с электронной парой. В результате возникает традиционный карбоний-пон трет/1-бутила, который взаимодействует с молекулой бутена с образованием карбоний-иона С . Если через Ь и И—О—Ъ обозначить кислотные центры Льюиса и Бренстеда соответственно, то первые три стадии алкилирования [c.347]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Утверждение, что парафиновые углеводороды являются соединениями врагнт а или слишком малоактивными , было твердо и окончательно опровергнуто после того, как Ипатьев [20] и его сотрудники показали, что конденсация изопарафинов и олефинов идет даже при обычной температуре в присутствии кислотных катализаторов. В июне 1932 г. Ипатьев и Пайне показали, что хлористый алюминий, промотированный хлористым водородом, катализирует алкилирование гексдна этиленом. Позднее Гросс исследовал другие парафиновые углеводороды и катализаторы, в частности такой катализатор, как фтористый бор. Аналогичное алкилирование циклопарафинов изучал Комаревский. [c.304]

    Катализаторы. Как уже упоминалось выше, кислотные катализаторы можно подразделить на два класса соли галоидоводородных кислот тина Фриделя —Крафтса и кислоты, способные к переносу протона. Из последнего класса для промышленных процессов алкилирования предложены два катализатора — серная кислота и фтористый водород как наиболее подходящие, так как они являются жидкостями и обращение с ними проще. Однако алкилирование этиленом в их присутствии проходит нелегко, вероятно, вследствие устойчивости образующихся нри этом сложных этиловых эфиров. Этилирование изобутана проходит с исключительно высоким выходом в присутствии хлористого алюминия и некоторых других катализаторов типа катализаторов Фриделя—Крафтса. Разработан промышленный процесс производства 2,3-ди1 етплбутана по [c.309]

    Фенольные ядра дифенилолпропана можно алкилировать также действием алкенов в присутствии концентрированной серной кислоты, фтористого бора, п-толуолсульфокислоты, кислотной активированной глины и других агентов (табл. 4)вв-7з ц здесь данные, полученные различными авторами при алкилировании дифенилолпропана изобутиленом в присутствии серной кислоты, также весьма разноречивы. В патентах отмечается возможность получения с хорошим выходом MOHO-, ди- и тетраалкилзамещенных дифенилолпропана следующего строения  [c.20]

    Таким образом, при алкилировании дифенилолпропана алкил-галогенидами в присутствии хлористого алюминия и при алкилировании изобутиленом в присутствии кислотных конденсирующих катализаторов (серная кислота, ВРз и другие) конкурирующей реакцией является распад дифенилолпропана на фенол и п-изопропенилфенол с последующим их диспропорционированием, полимеризацией и ал-килированием. Приведенные в литературе данные по выходам ал-килзамещенных дифенилолпропана весьма разноречивы. Преобладающей реакцией, по-видимому, является распад дифенилолпропана, и, следовательно, нельзя ожидать достаточно хорошего выхода алкилзамещенных дифенилолпропана. Значительно более обнадеживающими являются результаты алкилирования изобутиленом в присутствии более мягкого катализатора — фенолята алюминия, на котором был достигнут выход 65%. Алкилирование дифенилолпропана диизобутиленом на всех испытанных катализаторах протекает плохо. [c.22]

    Трис-фенол 1 (стр. 78) может быть получен алкилированием дифенилолпропана или его орто-пара-изомера п-изопропенилфено-лом в присутствии кислотных или щелочных катализаторов. [c.190]

    Однако в катализированном кислотами алкилировании продукты, предполагаемые при таком прибавлении, совсем не обязательно находятся в больших количествах. Например, термическое алкилирование изобутана с этиленом дает в четыре раза больше 2,2-диметил бутана, чем 2-метилпентана. Алкилирование в присутствии хлорида алюминия дает 70—90% 2,3-диметилбут тана, 10—25% 2-метилпентана и только незначительное количество 2,2-диметилбутана. Подобно этому, при термическом алкилировании пропилена и изобутана получают 2,2-диметилпентан, в то время как кислотно-катализированное алкилирование дает смесь, содержащую в большей степени 2,3- и 2,4-диметилпентаны. [c.129]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Хорошо известны моющие средства на базе нефтяных сульфокислот. Их получают сульфированием алкилированных бензинов. Алкилирование достигается обработкой ароматического сырья мо-нохлорированной керосиновой или лигроиновой фракцией, или же олефиновым полимером (например, тримером бутена или тетрамером пропилена) в присутствии безводного хлористого алюминия для полимеризации необходим кислотный катализатор. Число, размер и структура боковых алкильных цепей существенно важны для предопределения свойств получаемого моющего средства. Сульфирование производится при обычных температурах. [c.572]

    Полимеризация кислотные катализаторы вызывают полимеризацию олефинов, поэтому неблагоприятный для алкилирования режим — малая концентрация пзопарафина, недостаточная активность катализатора, повышенная температура реакции — вызывают образование полимеров в составе продуктов алкилирования. [c.81]

    При участии Г. М. Тельбиза изучены бренстедовские кислотные центры цеолитов, способствующие образованию карбанионов, в результате чего расширены представлепия о формах существования гидроксильных групп в полостях цеолитов. В поликатионных формах цеолитов типа фозказита обнаружены неизвестные ранее качественно новые структурные гидроксильные группы, доказана их кислотность. Установлено, что эти группы находятся в доступных местах кристаллической решетки и способны увеличивать каталитическую активность цеолитов в реакциях крекинга и алкилирования, протекающих по карбоний-понному механизму. [c.14]

    Позиция Г. А. Ола основывается на представлении о так называемых суперкислотах, или сверхкислотах, сложной природы. Сунеркислотиый центр включает как центр Бренстеда, так и льюисовский кислотный центр, причем кислотность Льюиса усиливает бренстедовскую кислотность 181. С этой точки зрения и(шлгкатионно-декатионированные формы цеолитов, обладающие бренстедовосой и льюисовской кислотностью, также можно рассматривать как суперкислоты. Наличие кислоты Льюиса в структуре активного центра позволяет по новому подойти к вопросу гидридного переноса при алкилировании. [c.347]

    В таком варианте первоначальный вид активного центра не во( нроиз-водится, кислотный центр Льюиса продолжает удерживать водород, влияние центра Льюиса иа центр Бренстеда ослабевает, а следовательно, теряются исходные кислотные свойства катализатора. С этим, но-видимому, и связана быстрая потеря катализатором акт11вности, выражающаяся в резком увеличении содержания незамещенных углеводородов в продуктах алкилирования и сильном пониясе1гии выходов. [c.349]

    Чтобы избежать гидролиза сложных эфиров, следует использовать объемистые грет-бутильные группы. Метиловые эфиры можно применять в том случае, если кислотные свойства активной метиленовой группы усилены. Для этого, например, подходит образование я-комплексов типа арен-Сг (СО)з, в которых атом металла является электроноакцептором [341, 930]. Эти комплексы получают при кипячении с гексакарбонилом хрома. После почти количественного алкилирования (СНгСЬ или СбНб/цетилтриметиламмонийбромид/50%-ный NaOH, 1,5—3 ч при комнатной температуре) комплексы можно легко разрушить солями церия [341, 390]. [c.189]

    В случае ацетофенонов, однако, для того же типа реакций более эффективной, чем твердый КОН, была комбинация водного гидроксида натрия с ТЭБА (50 С, 3 ч). Выходы продуктов тао<же были не очень хорошими [352, 1477]. При использовании техники экстрактивного алкилирования по Брендстрёму была получена смесь моно- и диметилированных ацетофенонов [356]. Редкое использование этих реакций для синтеза можно объяснить тем, что арилкетоны обладают малой кислотностью. Ранние кинетические исследования показали, что в эфире ионные пары с четвертичным аммониевым катионом образуются быстро и сразу алкилируются [353]. [c.193]

    Высокая кислотность серной кислоты предопределяет ее большую активность в реакциях, связанных с пере-.мещением протона и образованием карбоний-ионов. По мнению некоторых авторов, этим обу.ловлена меньшая избирательность серной кислоты, чем фтористоводородной, в реакция ал илирования, так ак в оптимальных для алкилирования условиях серная кислота способна ускорять и реакции скелетной изомеризации, гидрополи-мерпзации, миграции метильных групп и другие, лроис-ходящие с перемещением протона. [c.70]

    Реакции присоединения воды к углеводородам, дегидратации спиртов, изомеризации, алкилирования, дезалкилирования, переалкилиро-вания, полимеризации и крекинга лучше всего описываются в предположении о существовании ионоподобных промежуточных продуктов (карбоний-иона и карбаниона), образующихся в присутствии кислотных или основных катализаторов. [c.36]

    Влияние закачки серной кислоты на нефтеотдачу в промысловых условиях наиболее полно изучено на месторождениях ТатАССР при линейном и очаговом вариантах внутриконтурного заводнения. Для создания кислотных оторочек использовали алкилированиую серную кислоту. Размеры оторочки выбирали из расчета, что требуемая концентрация генерированных в пласте сульфокислот (ПАВ) будет обеспечиваться в объеме жидкости, равном одному объему порового пространства. Например, для создания концентрации ПАВ 0,05 % должно быть закачано серной кислоты в количестве 0,14—0,16 % от объема порового пространства пласта. В абсолютном исчислении масса подаваемой в каждую скважину концентрированной серной кислоты менялась от 500 до 800—1200 т. [c.142]


Смотреть страницы где упоминается термин алкилирование кислотность: [c.199]    [c.248]    [c.326]    [c.50]    [c.341]    [c.14]    [c.320]    [c.343]    [c.346]    [c.349]    [c.350]    [c.350]    [c.351]    [c.352]    [c.167]    [c.37]   
Основы органической химии Ч 2 (1968) -- [ c.224 , c.231 , c.232 ]




ПОИСК







© 2025 chem21.info Реклама на сайте