Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий ионообменные

    В Советском Союзе и за рубежом выпускается большое количество различного рода ионообменных смол. Краткая характеристика наиболее важных смол отечественного производства приведена в табл. 9, смол, выпускаемых иностранными фирмами, — в табл. 10. [c.80]

    По свойствам веществ, участвующих в потенциалопределяющих процессах, принята следующая классификация электродов электроды первого и второго рода, газовые, окислительно-восстановительные, ионообменные. [c.479]


    Ионообменная адсорбция. Поскольку сильные электролиты в растворах полностью или почти полностью диссоциированы на ионы, адсорбция электролитов Нг1 поверхности твердых адсорбентов в результате действия обычных адсорбционных и электрических сил имеет свои специфические особенности. Иными словами, адсорбция ионов сильных электролитов протекает под воздействием двух родов сил молекулярно-поверхностных адсорбента и электрических, проявляющихся только при адсорбции ионов. [c.361]

    Ионный обмен. Ионообменная адсорбция состоит в том, что практически нерастворимый адсорбент способен диссоциировать с поверхности и поглощать из раствора катионы или анионы, выделяя одновременно в раствор эквивалентное число катионов или анионов другого рода, имеющих меньшее сродство к данному адсорбенту. [c.339]

    Для разделения смесей электролитов на пути движения ионов в электролизере ставят различного рода диафрагмы или камеры с гранулированным, как правило, ионообменным материалом. За счет раз- [c.316]

    Рассмотренный процесс пропускания через ионообменную колонку раствора, содержащего один сорт ионов, представляет наиболее простой, но практически важный случай ионного обмена в колонках. Этот процесс используют для замены в растворе одного иона другим, например, ионов Са + ионами N3+ при умягчении воды, для извлечения и концентрирования металлов, для разделения электролита и неэлектролита. Более общий случай применения ионитов в колонках — разделение двух и большего числа ионов. Такого рода процессы осуществляются с помощью ионообменной хроматографии. [c.686]

    В соединительной ткани протеогликаны образуют ряд монтажей последовательно возрастающей сложности, своего рода иерархии макромолекулярных агрегатов. Функции протеогликанов в соединительной ткани во многом определяются свойствами входящих в их состав гликозаминогликанов. Так, ионообменная активность гликозаминогликанов как полианионов обусловливает активную роль протеогликанов в распределении ряда катионов в соединительной ткани. Например, накопление кальция в очагах оссификации связано с одновременным накоплением хондроитинсульфатов, активно фиксирующих катионы кальция. Такие функции протеогликанов, как функция связывания экстрацеллюлярной воды и регуляции процессов диффузии, также в значительной мере зависят от свойств входящих в их состав гликозаминогликанов. [c.669]


    Одна из актуальных проблем, связанных с химическим обогащением, заключается в изучении неорганических сорбентов, многие из которых обладают ионообменными свойствами, а также кинетики и механизма процессов поглощения этими веществами ионов из растворов различного состава. Ведущиеся исследования имеют научное и важное практическое значение. При решении задач этого рода комплексно используют разные методы в том числе мессбауэровскую спектроскопию. [c.214]

    Ионообменное разделение родия и иридия [1102]. [c.259]

    Ионообменное отделение родия от платины, палладия и иридия [1104]. [c.259]

    Ионообменное отделение родия от других металлов платиновой группы [1747]. [c.306]

    Изучение комплексов трехвалентного родия электрофорезом на бумаге и ионообменной хроматографией [2148]. [c.322]

    Полученные экстракцией или адсорбционным разделением концентраты гетероатомных соединений содержат примеси, глав ным образом моно- и бициклических аренов. Очистка от углеводо родов и разделение серусодержащнх соединений на группы осу ществляется вакуумной дистилляцией, адсорбционной хромато графией, ступенчатой реэкстракцией растворами серной кислоты [248], комплексообразованием с солями ртути или серебра Очистку и разделение азотсодержащих оснований проводят с по мощью ионообменной или адсорбционной хроматографии [249, 250]. Кислородные соединения (адсорбционные смолы) очищают от углеводородов и разделяют на классы методами адсорбционной хроматографии, вакуумной дистилляции и этерификацией борной кислотой [248]. Дальнейшие исследования гетероатомных соединений направлены на выявление преобладающего типа соединений в очищенных образцах или идентификацию индивидуальных соединений. [c.142]

    Из приближенной теории следует, что адсорбционное торможение тангенциальных движений растет пропорционально квадрату адсорбируемости органического вещества и, следовательно, в гомологическом ряду — пропорционально квадрату коэффициента Траубе. Высокая чувствительность максимумов 2-го рода к адсорбции ПАОВ послужила основой для разработки адсорбционного полярографического анализа, который используется при определении суммарного количества органических загрязнений в воде (см. 1.2) и в растворах солей, а также при изучении миграции ПАОВ в водные растворы из различных полимерных материалов, ионообменных смол и др. Калибровка осуществляется по какому-либо известному ПАОВ (см. рис. 4.14, б). Адсорбционный полярографический анализ позволяет определить наличие примесей ПАОВ в водном растворе при концентрации порядка 10- М в пересчете на [(С4Нд)4Ы1Вг. [c.233]

    Высокая чувствительность максимумов второго рода к адсорбции ПАОВ послужила основой для разработки адсорбционного полярографического анализа, который используется при определении суммарного количества ПАОВ в воде и растворах солей, а также при миграции ПАОВ в водные растворы из различных полимерных материалов, ионообменных смол и резин. Градуировка осуществляется по какому-либо известному ПАОВ, например бромистому тетрабутиламмонию (ТБАВг). Адсорбционный полярографический анализ позволяет определить наличие примесей [c.145]

    Однако ионы оксония не могут удалиться от полимерной цепи, имеющей сильный отрицательный заряд. Они образуют вокруг цепи своего рода ионную атмосферу (см. 13.2). Однако она удерживается только электростатическим взаимодействием, и потому легко осуществима замена катионов Н3О+ другими катионами. Замена одних подвижных ионов заряженных цепей поперечо-сшитых полимеров другими получила название ионного обмена. Сами полимеры, способные к ионному обмену, называются ионообменными смолами или ионитами. Полимер, который является полианионом, способен к обмену катионов и называется катионитом. Полимер, который содержит положительно заряженные группы, иапример фрагменты [c.146]

    Различие между водородными и молекулярными связями обусловливает различие в растворимости и реакционной способности целлюлозы и ее производных. Таким образом, линейные цепочки целлюлозы сшиты между собой весьма непрочно и могут разрушаться в процессе хроматографирования различных веществ. Так, например, при пропускании через целлюлозоионитную колонку раствора смеси белков, сорбция белковых молекул происходит не только за счет ионных и полярных связей, но и за счет водородных связей. Возникает своего рода конкуренция за водородные связи между макромолекулами целлюлозы, с одной стороны, и молекулами целлюлозы и белков, с другой. Этим объясняется высокая емкость поглощения ионообменных целлюлоз в процессе сорбции белков и других высокомолекулярных веществ. Макромолекулы целлюлозы могут соединяться между собой также и через обычные валентные связи (глюкозидные и сложноэфирные). [c.62]


    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    На стереохимию гидрирования могут оказывать влияние функ-щюнальные заместители в восстанавливаемом соединении, способные взаимодействовать непосредственно с катализатором или носителем ( якорный эффект). Так, гидрирование двойной связи в 1 -бензилоксикарбонил-4-пропилиденпирролидин-2-карбоновой кислоте на платиновом катализаторе приводит в основном к образованию г/г/с-изомера. Следовательно, эта непредельная кислота в ходе реакции адсорбируется на катализаторе большей частью таким образом, что ее карбоксильная группа обращена в сторону, противоположную поверхности катализатора. Чтобы изменить положение молекулы кислоты на катализаторе при адсорбции и тем самым стереонаправленность гидрирования, используют в качестве носителя катализатора не нейтральный пористый материал, как обычно, а основную ионообменную смолу. Благодаря солеобразованию с такой подложкой карбоксильная группа начинает играть роль своего рода якоря, ориентирующего адсорбирующуюся молекулу карбоксильной группой вниз, к поверхности катализатора. Теперь уже атом водорода, перемещаясь от катализатора к С -атому гетероцикла, образует с ним связь с той стороны, в которую обращена карбоксильная группа, т. е. занимает по отношению к ней /1/с-положение, тогда как про пильный заместитель оказывается в трапс-иоШ жении  [c.32]

    Из выражения (6.14) следует, что селективность жидкостных мембран зависит от коэффициентов распределения и подвижности ионов А" и в". В случае полной диссоциации молекул ионита (чего следует ожидать в растворителях с высокой диэлектрической проницаемостью) подвижность ионов определяется только природой растворителя и не зависит от природы аниона К . Так, вводя карбоновые, сульфоновые или фосфорорганические кислоты с длинной цепью в нитробензол или нитрометан, можно получить на их основе мембранные электроды с высокой селективностью к различным катионам. При этом неважно, какого рода группы - карбоксильные, сульфатные или фосфатные - введены в качестве ионообменных. Если вместо кислоты в нитробензол ввести анионообменные молекулы, например тетраалкиламмониевые соли, то получим анионоселективный электрод, селективность которого уменьшается в ряду Г > Вг > СГ > Р. [c.179]

    Предложены " изделия, содержащие пироуглерод с плотностью 1,1-1,6 г/ м модулем упругости от 40-100 кH/мм шероховатостью поверхности до 1 мкм в качестве различного рода протезов, в том числе сердечных клапанов и их компонентов. Углеродные отложения применяются в качестве энтеро- и гемосорбентов при лечении интоксикаций, аллергий, бронхиальной астмы, артериосклероза, кардиоишемии, гепатита и др. Показано, что терапевтический эффект определяется их пористой структурой и ионообменными свойствами. Полученные водород- и металл-замещенные углеродные отложения являются эффективными катализаторами в реакциях инверсии сахарозы и гидролиза эфиров жирных кислот, а также позволяют селективно улавливать тяжелые металлы и радионуклиды. [c.104]

    Естественно, что природные вещества подобного рода стали изучать в отношении ионного обмена. Однако, как показывает опыт, эффективность природных материалов часто недостаточна. То же можно сказать и о многих синтетических ионообменни-ках (окисях и гидроокисях металлов, солях гетеро-поликислот и др.). Поэтому оказалось необходимым проводить широкие исследования как по улучшению [c.5]

    Таким образом, у данного типа ионообменников наблюдается переход от анионного обмена в кислом растворе к катионному обмену в щелочном растворе. Подобного перехода не наблюдается, если М — элемент с низкой основностью, например кремний. Переход от одного типа обмена к другому происходит в определенном интервале значений pH, зависящем от основности иона металла. Отсутствие резкого перехода, отвечающего этому изменению (здесь уместно сравнение с изоэлектриче-ской точкой амфотерных ионов), и возможность в некоторых случаях одновременно и катионного и анионного обмена при определенном значении pH дают основание предполагать, что ионообменные группы неравноценны. Силикагель обладает только катионообменными свойствами [20] высокое электронное сродство у четырехвалентного иона кре.мния проявляется в форме очень слабой основности гидроксильных групп. Атомы водорода последних легко заменяются катионами даже в кислых растворах, особенно теми, которые легко координируются с кисло- родом. На рис. 24 представлено влияние pH раствора на величины коэффициентов распределения различных ионов при сорбции нх на силикагеле. Из этих данных следует, что указанные ионы можно разделить при определенных значениях pH раствора. Этот метод был использован [21] для разделения урана, плутония и трехвалентных металлов (продукты деления) из растворов, полученных при растворений облученрого урана кислоте. Значения коэффи- [c.119]

    С целью ускорения расчетов для практических задач построена диаграмма (рис. XVII-9) в соответствии с уравнениями (116), где переменные представлены в виде безразмерных групп г, S, Sir и и/и Пример. Желательно определить остаточную жесткость воды после того, как ионообменный фильтр проработал в течение 16 ч рода проходила через слой ионита толщиной 0,912 м со скоростью 16,35 л1м -мин. Начальная жесткость воды соответствует 300 частям углекислого кальция на миллион частей воды, что составляет 1,0 кг-экв иона кальция на миллион кг воды. Начальное содержание Заменяемого натрия в ионообменной смоле эквивалентно 57 250 г СаСОз/ [c.483]

    Ч1ротеииы с помощью кислотного, основного или ферментативного гидролиза могут расщепляться на простейшие составляющие — а-ами-нокарбоновые кислоты, обычно называемые просто а-аминокислотами. Ка.чественный анализ получающихся при этом смесей аминокислот связан с относительно большими трудностями. Э. Фишер (1901 г.) обрабатывал такие смеси спиртом и разделял образующиеся в результате смеси сложных эфиров а-аминокислот дробной перегонкой. В настоящее время эти соединения разделяют и идентифицируют методами газовой хроматографии. Использование ионообменной хроматографии позволяет разделить подобные смеси без предварительной этерификации. Существуют приборы, которые автоматически проводят качественный и количественный анализ смесей такого рода. При этом первоначально а-аминокислоты разделяются на ионообменных смолах, элюаты обрабатываются нингидрином, а образующиеся синие окрашенные вещества анализируются колориметрически, кривые поглощения записываются с помоп ью самописца. [c.647]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Анализ чистой платины и сплава ее с родием также выполняют с отделением основы методом ионообменной хроматографии. Платина и палладий в виде хлоридных анионных комплексов не сорбируется на катионите Дayэк -50WX8, на котором концентрируются примеси. Примеси определяют спектрально после элюирования 4 N HNOg 795]. [c.127]

    В этой книге рассмотрены такие реакции замещения, которые протекают при не слишком жестких условиях, например при обработке твердого вещества водными растворами при температурах, обычно не превышающих 100°. Реакции этого типа относятся, как правило, к ионообменным. Однако в некоторых случаях происходят более глубокие изменения, а именно изоморфное замещение, которое можно также рассматривать как одну из форм ионного обмена. Подобные явления часто наблюдаются среди алюмосиликатов, однако чтобы осуществить их, необходимо проводить кристаллизацию этих соединений из расплавов соответствующего состава например, S1 может обратимо замещаться на КА1 или NaAl [18]. Синтез описанных выше аналогов, содержащих галлий и германий, можно рассматривать в качестве примера, когда замещение вполне возможно с точки зрения структуры, но осуществить его обычными средствами нелегко. Однако различие между поведением такого рода и истинным ионным обменом довольно условное, так как подвижность даже самых простых катионов в неорганических ионооб-менниках может весьма значительно меняться, а в некоторых случаях может быть равной нулю (стр. 69). Подобным же образом в глинистых минералах наблюдаются такие случаи, когда диффундирующие ионы фиксируются в решетке, что препятствует дальнейшему обмену (стр. 32). Эта область еще мало изучена, и можно ожидать, что в будущем она вызовет значительный интерес. [c.26]

    Отсутствие тесных корреляционных связей для казалось бы очевидных зависимостей количества мономолекулярно и физико-хими-чески связанной воды с приведенными выше параметрами торфа нашли в настояш,ее время объяснение, основанное на глубоком изучении химических, физико-химических процессов, протекающих в торфе при различного рода воздействиях. В частности, например, физико-химические исследования торфа различной влажности и степени замещения ионообменного комплекса на ионы кальция позволили показать, что гидрофильные свойства его не являются суммарным эффектом гидрофильности твердой составляющей торфа и гидратации вводимых катионов. Вследствие подвижности макромолекул органической части в торфе относительно легко происходят структурообразовательные процессы, приводящие к изменению физической структуры его ассоциатов. Соответственно изменяются и водные свойства [3, 6]. Среднее [c.50]

    Применительно к глинам, глинистым минералам и другим высокодисперсным системам теория лиофильности, разработанная А, В. Думанским, нашла свое дальнейшее развитие в работах отделов Института коллоидной химии и химии воды им. А. В. Думанского АН УССР 12—22]. В них дана количественная оценка лиофильности твердых поверхностей по величинам теплот смачивания, структурносорбционным характеристикам, диэлектрическим показателям, электрической спектроскопии и другим физическим и физико-химическим параметрам. Взгляды А. В. Думанского широко используются при изучении вопросов получения сорбентов, катализаторов, наполнителей, пластификаторов, полиэлектролитов, гетерогенных систем, металлополимеров, сахаристых веществ, кондиционированной воды, ионообменных смол, гранулированных ионитов, коллоидных растворов, структурированных неньютоновских жидкостей и различного рода материалов на их основе, а также при создании теории сорбционных и ионообменных процессов как в живой, так и неживой природе. [c.222]

    Исследования Д. Г. Звягинцева по адсорбции микроорганизмов на модифицированной поверхности стекла, содержащей преимущественно либо гидрофильные (NH+2, С00 , 0Н ), либо гидрофобные — (СНз) — группы, еще раз продемонстрировали роль природы поверхности адсорбента во взаимодействии мел<ду микробными клетками и твердыми материалами, а также всю сложность этого процесса [101, 103, 198]. Определенную селективность по отношению к вирусам проявляют некоторые синтетические полиэлектролиты. Например, сополимер стирола и малеинового ангидрида, сшитый дивинилбензолом, способен адсорбировать из воды вирус табачной мозаики (палочки длиной 3000 А и диаметром 160 A) на 100% и вирус полиомиелита (шарообразные, диаметром 350 А с большим содержанием РНК) —на 99,99%, в то время как ионообменная смола Амбер-лайт ХЕ-119 поглощает только 97о вируса табачной мозаики. Поперечносшитый сополимер азобутилена и малеинового ангидрида РЕ 60 в виде порошка с размером частиц 100 меш адсорбирует вирусы в присутствии других микроорганизмов и органических веществ, что позволяет обходиться без дополнительного фильтрования или обработки жидкости ионообменными смолами при концентрировании вирусов и выделении их из различного рода сточных и природных вод [509, 511]. В ионообменных смолах аниониты, поверхность которых заряжена положительно, адсорбируют микроорганизмы значительно лучше, чем отрицательно заряженная поверхность катионитов. В последнем случае определенное значение имеет природа катионов, насыщающих смолу сравнительно хорошо сорбируются отдельные микроорганизмы (например. Вас. my oides, Sar ina Sp.) водородной формой смолы, хуже — катионитами, насыщенными Си +, Ее + и А1 +, и еще хуже при насыщении ионами кальция, магния и бария. Формы смолы, содержащие одновалентные катионы (К+, Na+, NH+4), практически не сорбируют [c.190]


Смотреть страницы где упоминается термин Родий ионообменные: [c.195]    [c.157]    [c.520]    [c.633]    [c.589]    [c.73]    [c.187]    [c.26]    [c.178]    [c.635]    [c.241]    [c.14]    [c.257]    [c.208]   
Колориметрические методы определения следов металлов (1964) -- [ c.692 ]




ПОИСК







© 2025 chem21.info Реклама на сайте