Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Красители полна

    Структура ассортимента красителей, выпускавшихся в 1960 г., характеризовалась незначительным объемом производства оптических отбеливателей и красителей длй химических волокон (0,1 общего выпуска красителей), полным отсутствием активных и катионных краси- [c.136]

    Ряд прямых красителей плохо выбирается шелком в нейтральной среде. В этом случае крашение ведут в растворе, содержащем 2—5% уксусной или муравьиной кислоты и 10—20% глауберовой соли. Обработку начинают в теплой ванне, постепенно нагревая ее до 90° С, при этой температуре красят 45— 60 мин. Лучшую равномерность окраски получают при замене кислоты аммонийными солями — уксуснокислым или сернокислым аммонием, в присутствии которых краситель полнее выбирается из ванны. [c.161]


    В настоящее время имеется около 2000 ГОСТов на химическую продукцию, по которым выпускается около 8% общего ее объема. Наиболее полно в ГОСТах отражена продукция основной химической промышленности, па которую имеется 130 ГОСТов, на красители— ПО, на органические полупродукты — 85, на краски и эмали — 60. Степень охвата стандартами основных видов продукции по объему выпуска составляет в нефтехимической и нефтеперерабатывающей промышленности — 95,0—98,0%, в производстве минеральных удобрений 90,0%, серной кислоты и соды 100,0%, реактивов и особо чистых веществ 85,0°/о, лакокрасочных материалов 65,0% Наиболее низок уровень стандартизации в производстве пластических масс (26%), изделий из них (3—4%), а также в производстве резиновых и асбестовых технических изделий. [c.118]

    Обработка этилированных бензинов активированным углем приводит к полному удалению из них наиболее часто применяемых красителей. [c.674]

    Удельную поверхность можно также определить на основе данных по абсорбции либо газов (метод БЭТ определения удельной поверхности [138]), либо красителей (в частности, метиленового голубого), или по теплоте смачивания поверхности [321]. Некоторые из этих методов позволяют найти полную удельную поверхность частиц, включая и внутреннюю поверхность, даже если размеры пор частиц не превышают нескольких нанометров. Применение этих методов для частиц с сильно развитой поверхностью (например частиц угля в дыме) может привести к неточности в определении удельной поверхности. [c.96]

    Метиловым фиолетовым называют смесь более и менее полно. метилированных фуксинов в продаже имеется несколько марок этого красителя, отличающихся по степени метилирования. Раньше их получали путем алкилирования фуксина метиловым спиртом и соляной кислотой. Теперь л<е продукт, состоящий главным образом из пентаметил-парафуксина (далия В), получают в результате окисления диметиланилина медным купоросом. Центральный метановый атом углерода, требующийся для построения молекулы красителя, образуется из расщепляющейся молекулы диметиланилина. [c.751]

    Вместо золя золота для демонстрации защиты лиофобных золей от действия электролитом можно использовать краситель конго красный. Концентрация конго красного должна быть 0,01%-ной, условия проведения опыта те же, что и для золя золота. При частичной коагуляции золь конго красного меняет свой цвет с красного на фиолетовый, а при полной коагуляции — на синий. Золь конго красного используется для определения рубинового числа , которое для желатины определяется как количество миллиграммов сухой желатины, необходимое для защиты 10 мл 0,01%-ного раствора конго красного от коагулирующего действия одного миллилитра 10%-ного раствора хлорида натрия. [c.237]


    В настоящее время каталитические процессы широко используются в промышленности. Сейчас даже трудно назвать крупное производство химической промышленности, где бы не применялись катализаторы. Получение спиртов, альдегидов, аммиака, серной и азотной кислот, переработка каменного угля в жидкое топливо, процессы крекинга нефти при получении моторных топлив, синтез каучука, производство пластмасс, красителей, получение маргарина и других пищевых продуктов — вот далеко не полный перечень процессов, где широко используются катализаторы. В ряде случаев за счет применения катализаторов удается значительно снизить температуру проведения реакции, что позволяет уменьшать тепловые затраты и использовать менее жаростойкую аппаратуру, а также устранять нежелательные побочные реакции. [c.161]

    В три стеклянные ампулы с узким горлом емкостью 50—60 мл через воронку с оттянутым концом вносят примерно одинаковое количество (по 0,01 г) кристаллического Судана III. Через ту же воронку в каждую ампулу пипеткой отмеривают по 10 мл раствора ПАВ определенной концентрации (выше ККМ). 10 мл этого раствора вносят также в пустую ампулу (без красителя). Ампулы запаивают и перемешивают в течение 20—24 ч в аппарате для встряхивания. (Так как обычно нет возможности оставить аппарат работающим на сутки, встряхивание ведут в течение нескольких занятий.) После перемешивания ампулы вскрывают, их содержимое центрифугируют для отделения окрашенного раствора ПАВ от избытка нерастворившегося красителя. Для полного осаждения тонкодисперсной взвеси частиц красителя требуется центрифугировать растворы не менее 1 ч со скоростью 3000 об/мнн. [c.189]

    Получение эмульсий типа М/В и В/М (масло в воде и вода в масле). Берут в пробирку 4 см хлопкового масла или рыбьего жира и добавляют к нему при нагревании очень немного (на кончике шпателя) красителя, судана II или III. После полного растворения красителя охлаждают масло п разливают в две пробирки поровну. Приливают в одну пробирку [c.322]

    К. Шорлеммер в своей книге Возникновение и развитие органической химии (1894 г.) писал по этому поводу, что открытие Гребе и Либермана произвело полный переворот в ситцепечатании, в крашении и в производстве мареновых препаратов гораздо скорее, чем ожидали... Двадцать лет тому назад годичный сбор марены составлял около 500 тыс. т, из которых половина приходилась на Францию, но уже десять лет тому назад весь экспорт из Авиньона составлял 500 т. Когда друг автора, посетивший несколько лет тому назад этот интересный старинный город, попросил показать ему плантации марены, то получил ответ Она больше не растет, так как ее производят машинами . Открытие искусственного ализарина отразилось не только на земледелии, но еще большее влияние оно оказало на производство каменноугольной смолы, каустической соды и хлората калия. Что касается трехокиси серы, применяемой для получения серной кислоты, то ее производство открыло совершенно новую отрасль химической промышленности . Через 30 лет после открытия К. Гребе и К. Либермана цена на этот краситель упала более чем в 30 раз. [c.41]

    Пластмассы и синтетические волокна, красители и лекарственные препараты, моющие средства и краски-вот далеко не полный перечень органических продуктов химической промышленности. Теперь без них мы просто не можем представить себе своего существования. [c.314]

    Из приведенного далеко не полного перечня галоидсодержащих органических соединений, производимых в промышленном масштабе, можно видеть, что они нашли широкое применение как растворители, хладоагенты, антисептики, наркотические средства, анестетики, лекарственные препараты, инсектициды, стимуляторы роста растений, как мономеры в производстве полимеров и как исходные вещества в синтезе различных промышленно важных органических веществ (фенола, бензойной кислоты, различных красителей и др.). [c.154]

    В работах [192—194] на системе воздух — вода исследовали продольное перемешивание в барботажной колонне диаметром 300 мм и высотой 5,5 м. Для распределения воздуха использовали перфорированную тарелку с долей свободного сечения 1,5% и диаметром отверстий 2,5 мм. Плотность орошения во всех опытах была постоянной =278 см/с. Скорость воздуха хюг, отнесенная к полному сечению колонны, составляла 0,02 0,06 0,10 м/с. Поля коэффициентов продольной и поперечной турбулентной диффузии определяли с помощью системы трубок, теремеща.вшихся в. радиальном направлении. В центральную трубку стационарно подавали трассер (раствор метиленового голубого красителя), через остальные отбирали пробы жидкости. В работе [193] было измерено поле концентрации газа. [c.196]

    По цвету нефтепродуктов судят о соответствии их стандартам — о степени очистки от смолистых соединений, придающих продуктам темную окраску. В бензинах цвет определяют для установления интенсивности окраски (концентрации красителя). Методы оценки цвета (за исключением бензина), широко распространенные в нефтяной практике, по существу, не являются в полном смысле колориметрическими, так как не позволяют определить концентрацию окрашивающих вещеспв сравнением интенсивностей окрасок испытуемого нефтепродукта и стандартного раствора или стекла. Конструктивно аппараты для определения цвета довольно однообразны. В основном они состоят из двух трубок одну из них заполняют испытуемым продуктом, другую — стандартным цветным раствором или в нее вкладывают цветные стекла. Отраженный свет, пройдя через обе трубки, собирается в окуляре, в котором получаются два окрашенных полукруга один от продукта а другой от раствора или стекла. Одинаковой окраски достигают либо изменением высоты столба продукта, либо изменением высоты стандартного цветного раствора или переменой стекла. [c.40]


    Нафталин — один из наиболее важных продуктов переработки каменноугольной смолы. До последнего времени около 70% нафталина использовалось в качестве сырья для производства фталевого ангидрида - сырья для производства пластификаторов, лаковых смол (алкидных смол) и связующих для стеклопластиков. В настоящее время главным потребителем нафталина становится производство суперпластификатора для бетона С-3. Последний представляет собой раствор натриевой соли продукта конденсации 2-нафталинсульфокислоты с формальдегидом. Добавление его в цементный раствор позволяет уменьшить количество воды в цементном растворе, сократить расход цемента при одновременном значительном увеличении механической прочности изделий из бетона и железобетона. Кроме того, нафталин используется как сырье для изготовления 2-нафтола щелочным плавлением 2-нафталинсульфокислоты, 1-нафтола—гидрированием в тетра-лин, окислением последнего в тетралол, при каталитическом дегидрировании которого получают чистый 1-нафтол 2-нафтол применяют в производстве красителей, 1-нафтол - в производстве селективных ядохимикатов. Кроме того, и тет-ралин, и тетралол представляют самостоятельную ценность как растворители. Большие и постоянно увеличивающиеся объемы потребности в суперпластификаторах делают необхо-димьш возможно более полное извлечение нафталина. [c.331]

    Для определения малых интенсивностей падающего света (10 °—10 2 квант/с на 1 см поверхности) в области длин волн 250—330 нм может быть использован спиртовой раствор лейкоциа-пида малахитового зеленого. Концентрация спиртового раствора актинометра подбирается таким образом, чтобы поглощение его в кювете на нужной длине было бы полным. Отмеренное количество актинометрнческого рас1Вора помещают в кювету и подвергают фотолизу до оптической плотности продукта при Я = 610 нм ие более 0,15, так как образующиеся молекулы красителя поглощают ультрафиолетовый свет и действуют как внутренний фильтр, что приводит к заниженным результатам. Интенсивность падающего света рассчитывают ио формуле [c.148]

    Важную роль в химизации играют продукты малой химии — химикаты-добавки, текстильно-вспомогательные вещества, красители, химические реактивы и т. п. От них во многом зависит качество текстильных материалов, кожи, меха, полиграфической продукции, бумаги, резины, строительных и лакокрасочных материалов. Так, применение текстильно-вспомогательных веществ различного назначения позволяет повысить яркость и устойчивость окрасок, снижает электризуемость, сминаемость текстильных материалов. Лакокрасочные покрытия придают изделию высокие декоративные свойства, защищают металл от коррозии. Высокочистая продукция обеспечивает потребности электронной, электротехнической, радиотехнической, медицинской промышленности. Новые области науки — такие, как молекулярная биология и генетика, биоорганическая химия, используют биохимические реактивы и препараты. Перед химической промышленностью стоит задача полного удовлетворения потребности в монокристаллах, ферритовых порошках, сегне-топьезоэлектрических материалах, люминофорах. [c.25]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    Искусство крашения краппом было, по-видимому, известно еще древни.м индусам, персам и египтянам. Крапп культивировался в Малой Азии и на Кипре уже несколько тысяч лет тому назад, оттуда проник в Италию и, значительно позже (начиная с XVI в.), во Францию, Голландию и Эльзас, где разводился в больших количествах. Работы по выяснению строения ализарина, начатые в 1868 г. Гребе и Лнбер-маном, и синтетическое получение краппового красителя очень быстро привели к полному вытеснению природного продукта с рынка. [c.719]

    Одним из наиболее характерных свойств витамина Вг является его большая светочувствительность. При облучении его в нейтральном растворе происходит полное отщепление остатка рибозы и образуется 6,7-диметилаллоксазнн, или люмихром (VI), в щелочном растворе под влиянием света происходит разложение флавинового красителя частично до люмихрома, но в основном до люмифлавина, 6,7,9-триметилизоалло-ксазина (VII)  [c.894]

    Возможна также комбинация обоих состояний [так называемые нейтроцианины, типичным примером которых мол<ет служить хиноли-новый желтый (стр. 1028)]. Эти простые соотношения показывают, что полиметиновые красители могут быть использованы для создания полной и хорощо обоснованной теории красителей (Кёниг, Кун, подробнее см. стр. 598). [c.1026]

    Отмывка после набивки. Добавление незначительной) количества порошка (0,1—0,2 г/л) в ваниу для отмывки способствует полному удалению избытка краски и при удалении пленки рисунок получается ярким и четким. Избыток красителя суспендируется и не осаждается на светлых участках. [c.156]

    Добавка от 100 до 300 г Типола на 100 л красильного раствора (в зависимости от применяемых кубовых красителей) способствует быстрому и полному смачиванию окисленной пленки с последующим восстановлением и растворением до образования дейкосоединения при условии содержания в красящем растворе достаточ1ного количества каустической соды и бисульф ита натрия для осуществления этого восстановления. [c.165]

    Если содержание твердого ПАВ в системе достаточно для того, чтобы при растворении было достигнуто значение ККМ, то кривые 1 имеют два излома (см. рис. 51, II). Первый из них отвечает началу резкого (практически линейного) возрастания электропроводности с повышением температуры, что обусловлено переходом от истинной к мицеллярной растворимости, т. е. совпадает с температурой Ткр. Это подтверждается тем, что выше температуры первого излома в присутствии красителя пинацианолхлорида растворы приобретают характерную для мицеллярных систем синюю окраску. Второй излом (при 1>Ткр) отражает момент завершения растворения твердой фазы, т. е., как и для кривых типа /, дает температуру полного растворения. [c.149]

    При макроэлектрофорезе подвижность частиц оценивают по скорости перемещения границы раздела между золем и боковой жидкостью , в которую погружены электроды. Этот метод предполагает различие в окраске или мутности золя и боковой жидкости. Растворы ПАВ в большинстве случаев бесцветны и практически прозрачны (мутность, обусловленная светорассеянием на мицеллах, при небольших концентрациях обычно незначительна). Поэтому для макро-злектрофоретических исследований их окрашивают путем солюбилизации водонерастворимого красителя, например су-дана П1, оранжевого ОТ. Раствор, содержащий меченные таким образом мицеллы, дает четкую границу раздела с неокрашенной боковой жидкостью. Этот прием позволяет легко решить вопрос о выборе боковой жидкости. Как известно, она должна быть по своим свойствам (электропроводности, плотности, величие pH) возможно более близкой к исследуемому золю. В данном случае в качестве боковой жидкости используют раствор ПАВ с той же концентрацией (или близкой к ней), что и испытуемый, но без красителя. Это позволяет в наиболее полной мере удовлетворить требования к боковой жидкости. [c.172]

    К системам, в которых наблюдаются обратимые переходы подобного рода, относятся водные растворы многих поверхностноактивных веществ, например, мыл и мылоподобных веществ, а также растворы таннидов (дубильных веществ) и некоторых красителей. Эти растворы, если в них содержатся частицы, состоящие из большого числа мплр.ку.гц с полным правом можно отнести к лиофильным коллоидным системам, так как они обладают признаками коллоидных систем — гетерогенностью и высокой дисперсностью, но в отличие от лиофобных коллоидных систем термодинамически равновесны и агрегативно устойчивы. [c.399]

    Выполнение. В коническую колбу внести 200 мл раствора щелочи и маленький кристаллик метиленового синего. Взбалтывая раствор, добиться полного растворения красителя. Цвет раствора должен быть светло-синим. Теперь внести в колбу 100 мл раствора глюкозы. Раствор не размешивать, колбу поставить на электрическую плитку и внимательно следить за ней. Как только раствор обесцветится (при температуре примерно 50— 60° С), колбу снять и осторожно,-не встряхивая, поставить на лист белой бумаги и продемонстрировать отсутствие окраски. Затем колбу сильно взбодтать. Раствор неожиданно становится синим. Поставить колбу на бумагу, и синий цвет раствора быстро исчезает. При взбалтывании он снова появляется и гфи стоянии исчезает и т. д. При остывании раствора скорость процессов уменьшается. [c.58]

    Книга является первым учебником, написанным в полном соответствии с учебной программой по неоргаийческой химии для студентов технологических вузов, готовящих специалистов для текстильной, легкой и пищевой промышленности. Прогресс в этих отраслях промышленности особенно тесно связан с постоянным использованием достижений химии как при создании новых материалов (отбеливателей, красителей, волокон, искусственной кожи и т.д.), моющих средств, товаров народного потребления, так и при внедрении более прогрессивной технологии, позволяющей за счет замены механической обработки материалов на химическую повысить производительность труда и улучшить качество продукции. [c.3]

    ЭТОГО используются значительно большие количества красителя, чем для сенсибилизации, и краситель участвует в формировании конечного изображения. Для получения полного диапазона видимых цветов применяется трехцветный процесс. Используются три эмульсионных слоя, каждый из которых сенсибили- [c.252]

    Для измерений малых интенсивностей света (<5-10 эйнштейн-с ) в области длин волн 250— 330 нм хорошим актинометром является спиртовый раствор лейкоцианида малахитового зеленого, подкисленный соляной кислотой до pH 2. При фотолизе лейкоцианида малахитового зеленого образуется окрашенный ион, который стабилен в кислом спиртовом растворе и имеет максимум поглощения при Я = 620 нм. Концентрация раствора выбирается такнм образом, чтобы поглощение его в кювете на актииометрируемой длине волны было полным. Определенный объем V актинометра помещают в кювету и подвергают фотолизу в течение различных промежутков времени. Время облучения выбирается так, чтобы оптическая плотность при Я = 620 нм не превыщала 0,15, поскольку образующиеся ионы поглощают ультрафиолетовый свет и могут действовать как внутренний фильтр. Это приводит к заниженным результатам. После облучения измеряют оптическую плотность при 1 = 620 нм и строят график ее зависимости от времени фотолиза. Интенсивность света определяют по формуле (5.34), где V — объем облучаемого раствора актинометра О — оптическая плотность в максимуме поглощения красителя нри Х = 620 нм е — коэффициент экстинкции иона при 620 нм, равный 9,49-10 М" -см Ф — квантовый выход фотолиза, равный 1. [c.259]

    Как уже указывалось, бромирование и тем более иодирование проводят в значительно меньших масштабах, чем хлорирование. Ввиду высокой стоимости брома и иода их стараются использовать без потерь. Для этого количественно улавливают выделяющийся при реакции бромо- и иодоводород и регенерируют из них галогены чаще же выделяют и возвращают в реакцию бром и иод, вводя окислители непосредственно в реакционную массу. Например, для получения 5-бромизатина, применяемого в синтезе красителей, к суспензии изатина в разбавленной соляной кислоте приливают солянокислый раствор брома, а затем для полного использования брома в реакционную массу пропускают хлор  [c.114]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Рассмотрим поглощение излучения раствором соединения при условии, что с изменением концентрации состав и структура этого соединения не меняются tмнoгйe органические красители, раствор хромата калия, забуферированный боратом или карбонатом натрия и т.д.). Концентрацию раствора обозначим через С. Поместим немного раствора в цилиндр и будем наблюдать поглощение излучения сверку в полном слое. Если согласно условию при разбавлении раствора общее количество поглощающих свет центров остается постоянным, общее светопоглощение также не изменится. При разбавлении в п раз концентрация раствора уменьшится в п раз, а толщина слоя во столько же раз соответственно увеличится, поэтому общее поглощение излучения не изменится. Следовательно, можно написать [c.318]

    Образование нелокализованных электронных пар характерно н для органических соединений, в которых есть сопрял енные двойные связи (так называются двойные связи, чередующиеся с единичными), например 1,3-бутадиен, или дивинил СИ2=СН—СН=СН2, 1, 3, 5-гексатри-ен СН2=СН—СН — СН—СН = СН2 и др. Особенно интересны вещества, молекулы которых содержат системы сопряженных двойных связей (полнены, красители, некоторые полимеры и др.). Их электрическая проводимость лежит в интервале проводимости полупровод- [c.122]

    В пробирке диаметром 30 мм или фарфоровом тигле сплавляют смесь равных количеств порощкообразного хлористого цинка (примечание 1), хлористого аммония и кетона Михлера и перемешивая, нагревают на масляной бане при 200°. После того как желтеющий плав начнет загустевать, отбирают (время от времени) "небольшие пробы и проверяют их растворимость в воде. Полная растворимость указывает а. конец реакции, которая обычно продолжается от 1 до 1,5 часа. К эя-Йму времени плав становится очень густым, а после охлаждения затвердевает полностью. Затвердевший плав измельчают в ступке заливают его в небольшом стакане 60 мл холодной воды, добавляют каплю соляной кислоты и перемешивают до тех пор, пока не растворятся хлористь й Цинк и хлористый аммоний, а краситель останется в виде очень мелкрй и однородной (без твердых комочков) взвеси. Капля жидкости на бумаге должна давать вытек, очень слабо окрашенный в желтый цвет. Осадок отфильтровывают на воронке Бюхнера и промывают холодной водой. Затем осадок дважды обрабатывают 150 мл воды, нагретой до 60°, и отфильтровывают. На фильтре остается небольшое количество бесцветного кетона Михлера (примечание 2). К объединенным фильтратам, нагретым до 50°, добавляют, при перемешивании, поваренную соль (из расчета 20 г на каждые 100 мл жидкости). После того как соль полностью растворится, жидкости дают остыть аурамин выпадает в виде желтых пластинок, которые отфильтровывают и Сушат на бумаге. [c.776]

    К фильтрату прибавляют раствор 1 г хлористого цинка в возможно малом количестве воды и затем насыш,енный раствор хлористого натрия до полного выпадения двойной соли красителя с хлористым цинком (полноту осаждения определяют пробой на фильтровальной бумаге капля раствора должна давать почти бесцветное кольцо вокруг окрашенного пятпа). Краситель отсасывают на маленькой воронке, промывают небольшим количеством насыщенного раствора хлористого натрия, отжимают между листами фильтровальной бумаги и сушат. [c.195]


Смотреть страницы где упоминается термин Красители полна: [c.391]    [c.71]    [c.18]    [c.168]    [c.7]    [c.473]    [c.147]    [c.167]    [c.220]    [c.39]    [c.253]    [c.307]    [c.193]   
Основные процессы синтеза красителей (1957) -- [ c.89 , c.248 ]




ПОИСК







© 2024 chem21.info Реклама на сайте