Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аморфные полимеры надмолекулярная

    Большое значение имеет соотношение количества макромолекул, вошедших в кристаллические образования и образующих аморфную фазу, которая обычно также присутствует в кристаллическом полимере. В аморфных полимерах надмолекулярные структуры менее четко выражены, однако в настоящее время можно уже с уверенностью сказать, что и в этом случае отсутствует хаотическое переплетение макромолекул. При ориентации аморфных полимеров эти структуры могут быть еще более усовершенствованы. [c.57]


    Очень важное влияние на механические свойства оказывает характер надмолекулярных образований в полимерах, т. е. взаимной упаковки макромолекул. Надмолекулярные образования в полимерах могут иметь весьма различную форму. Особенно четко этот своего рода полиморфизм проявляется в кристаллических полимерах. Макромолекулы могут образовывать отдельные монокристаллы, однако часто структурообразование не доходит до возникновения отдельных монокристаллов и заканчивается на промежуточных стадиях образованием пучков параллельно расположенных макромолекул, фибрилл, кристаллических лепестков, сферолитов (радиальных сростков кристаллических плоскостей) и др. В ориентированных полимерах легко возникают текстуры. Большую роль играет соотношение макромолекул, вошедших в кристаллические образования и образующих аморфную фазу, которая обычно также присутствует в кристаллическом полимере. В аморфных полимерах надмолекулярные структуры менее четко выражены, однако в настоящее время можно уже с уверенностью сказать, что и в этом случае хаотическое переплетение [c.43]

    Микроблоки надмолекулярной структуры представляют собой структуры, которые постоянно разрушаются в одних местах и образуются в других. Время их жизни при высоких температурах мало по сравнению со временем наблюдения, но значительно больше, чем время перехода свободных сегментов (не входящих в микроблоки) из одного равновесного положения в другое. Поэтому за достаточно большое время наблюдения структуры расплавов кристаллических полимеров и некристаллических полимеров при высоких температурах воспринимаются в среднем как набор хаотически переплетенных цепей. Следовательно, при определенных условиях опыта, например при изучении термодинамических (равновесных) свойств аморфных полимеров, модель хаотически переплетенных цепей приблизительно верна. Это подтверждается упоминавшимися выше эргодическими принципами, при времени наблюдения t Хг. В плане физической кинетики эта моДель, однако, неудовлетворительна. [c.56]

    В остальном ориентированные некристаллические и кристаллические полимеры имеют много общего. Полимеры и в том, и в другом состоянии обладают твердостью, анизотропией свойств и значительной упорядоченностью в расположении макромолекул. В тех и других образуются надмолекулярные структуры и обнаруживаются явления, обусловленные существованием этих структур. Одним из характерных различий процессов ориентации в этих двух типах полимеров является возможность непрерывного их осуществления в аморфном полимере и скачкообразность этого процесса [c.184]


    Надмолекулярная структура аморфных полимеров отчетливо не детерминирована. [c.171]

    Надмолекулярная структура. Способ укладки макромолекул в конденсированном состоянии определяется их регулярностью. Регулярные макромолекулы кристаллизуются, нерегулярные образуют аморфные системы. Количественными параметрами надмолекулярной структуры кристаллического полимера являются параметры его кристаллической решетки, а также степень кристалличности. Структура аморфного полимера характеризуется ближним порядком в расположении структурных единиц (сегментов) и однозначно охарактеризована быть не может. Косвенными характеристиками аморфной структуры полимера и интенсивности взаимодействия макромолекул являются его плотность и энергия когезии. [c.92]

    Изложенные выше представления о характере надмолекулярных структур в аморфных полимерах являются предположительными, приближенными, в том числе и представления о строении узлов флуктуационной сетки. Однако они достаточны для понимания того, как формируются закономерности механических свойств полимера. [c.99]

    Надмолекулярная структура аморфных полимеров [c.51]

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]

    Особенности надмолекулярной структуры поликарбоната были исследованы также с помощью лазерного метода [20]. Этот метод основан на использовании лазерного излучения, с помощью которого можно разделить надмолекулярные образования и выявить их границы. Надмолекулярная структура является специфическим свойством самого аморфного полимера. Молекулы поликарбоната объединяются в структурные образования — пачки. Основное термодинамическое требование, предъявляемое к таким системам, — уменьшение свободной [c.109]

    При работе с растровым микроскопом исключается длительная и кропотливая работа по подготовке препарата (реплики, ультра-тонкие срезы и т.п.). Вся процедура подготовки полимерного образца сводится к напылению на его поверхность слоя токопроводящего металла толщиной 2,5 нм и выше. Большие размеры образца, возможность вращения и перемещения его в камере микроскопа на значительные расстояния (до 5 см) делают РЭМ незаменимым инструментом для исследования поверхностей, изучения морфологии надмолекулярных образований в кристаллических и аморфных полимерах [11]. [c.357]

    Затем, по мере развития исследований разнообразных синтетических и природных полимеров, удалось получить некоторые синтетические полимеры в виде единичных микрокристаллов (монокристаллов). Понятие о кристаллической структуре изменилось - было сформулировано понятие кристаллической решетки полимеров. Одновременно изменились представления и об аморфных полимерах и сложилось новое современное понятие ориентированных полимеров. Выяснили, что процессы кристаллизации могут происходить лишь в ранее упорядоченных системах, причем возникновение простейших надмолекулярных структур начинается уже в аморфных полимерах. Механизм образования монокристаллов оказался иным, чем у низкомолекулярных соединений. [c.130]

    Кластеры представляют собой переходный тип структуры от аморфной к кристаллической. У некоторых полимеров при достаточных размерах кластеров в определенных условиях может происходить кристаллизация - переход в кластерах ближнего неустойчивого порядка в дальний устойчивый трехмерный порядок. Таким образом, процесс упорядочения макромолекул происходит постепенно с образованием все более сложных и более упорядоченных структур, и надмолекулярная структура аморфных полимеров является первым этапом упорядочения макромолекул. [c.136]


    У полимеров существуют два основных вида кристаллических образований монокристаллы (настоящие единичные кристаллы, но только очень малых размеров, видимые лишь в электронном микроскопе) и микрокристаллические образования - кристаллиты (кристаллические области в структуре полимера). В последнем случае поверхность раздела между кристаллической и аморфной фазами отсутствует. Кристаллиты можно рассматривать как кластеры с наивысшей степенью упорядоченности, т.е. кристаллической решеткой. Кристаллиты нельзя различить в электронном микроскопе, но их наличие можно обнаружить с помощью рентгеноструктурного анализа. Все кристаллические образования в полимерах анизотропны. И монокристаллы и кристаллиты характеризуются параметрами элементарной ячейки. Элементы надмолекулярной структуры кристаллических полимеров - монокристаллы, фибриллы, сферолиты - в отличие от элементов аморфных полимеров имеют дальний порядок, термодинамически и кинетически стабильны. [c.137]

    Действительно, хорошо известно, что кристаллический полимер растворяется гораздо хуже, чем аморфный полимер того же химтеского строеим. Ориентированные образцы также хуже растворяются по сравнению с изотропными образцами. Возлюжно, что и в сл5 чае изотропных образцов аморфных полимеров надмолекулярная структура может быть разли шой, однако этот вопрос до сих пор является предметом дискуссии. На международной конференции в Лондоне в 1979 г были представлены экспериментальные и теоретические данные об отсутствии нодульной структуры в аморфных полимерах, причем данные электронно-микроскопических исследований поверхности пленок и сюлов были причислены к артефактам [142]. Трудно, однако, представить, что если поверхность пленки, полученной из раствора, и поверхность скола блочного образца, полученного из расплава, дают одн] и ту же электронно-микроскопическую картину глобул, то эта картина является следствием артефактов. [c.333]

    В аморфных полимерах надмолекулярные образования Еыражены меньше и изучены значительно слабее, чем в кристаллических. Поэтому о прохождении здесь ориентационного процесса столь же детально говорить пока нельзя. Но, очевидно, все стадии, к-рые наблюдаются при ориентировании кристаллич. полимеров присущи и аморфным полимерам, только в значительно менее явной форме. Аморфные полимеры также могут растягиваться как с хорошо выраженной шейкой, так и практически без нее (равномерно). Из-за рыхлости надмолекулярной структуры у аморфных полимеров элементы этой структуры не могут удержать полимер в растянутом состоянии при снятии нагрузки (при темп-ре вытяжки), и поэтому образец будет сокраш,ать-ся. Чтобы сохранить аморфный полимер ориентированным, надо его охладить — ослабить дезориентирующую роль теплового движения. Отметим, что если растягивать аморфный полимер при темп-ре много выше темп-ры стеклования, то он будет течь — удлиняться без эффективного распрямления своих молекул. [c.258]

    Наряду с молекулярными структурами к одному из решающих факторов, oпpeдev яющиx свойства полимеров и волокон, относятся надмолекулярные структурные образования. На основании современных представлений, в реальных кристаллических и аморфных полимерах содержатся надмолекулярные образования. Полимеры, как правило, представляют собой структурно неоднородные системы, состоящие из областей с упорядоченным к беспорядочным расположением макромолекул. Надмолекулярные структурные образования обычно подразделяются на первичные и вторичные элементы структуры. Первичные структурные элементы образуются в результате строго закономерного расположения макромолекул относительно друг друга. Для кристаллических полимеров к подобным элементам структуры относятся кристаллы, а для аморфных полимеров — макрофибриллы или пачки самых разнообразных форм и размеров. Размеры первичных структурных элементов составляют около ЮОА. Эти структурные образования по размеру меньше макромолекул , длина которых для обычных волокнообразующих полимеров составляет до ЮОООА. Вторичные структурные элементы образуются из первичных структур. К ним относятся сферолиты и макрофибриллы. В кристаллических полимерах имеются кристаллические и аморфные области. В аморфных полимерах надмолекулярные образования не содержат кристаллических образований, но тем не менее по степени упорядоченности макромолекул они являются структурно неоднородными. [c.197]

    Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях в виде определенного рода упорядоченностей и морфологически обусловленных неоднородностей в аморфном полимере в виде кристаллических образований и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пических размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации. [c.42]

    Различают межструктурное и внутриструктурное набухание. При межструктурном набухании молекулы растворителя, диффундируя внутрь аморфного полимера, занимают имеющееся в нем свободное пространство прежде всего между элементами надмолекулярных структур. Если полимер и растворитель близки по природе, молекулы растворителя пррцикают и внутрь надмолекуг [c.313]

    Приведенные экспериментальные данные и результаты теоретических оценок касались ПЭВП, который является наиболее гибким и поэтому легче всего поддается ориентации по сравнению с другими полимерами. Однако аналогичные эффекты, как этого и следовало ожидать, наблюдались и для остальных полимеров. Для понимания причин, вызывающих изменение свойств, достигаемое регулируемым формированием структур, необходим детальный анализ деформационных и температурных воздействий, которым подвергается полимер в процессе переработки. Такой анализ стал проводиться лишь сравнительно недавно, хотя в течение последних 30 лет исследовалась роль надмолекулярных структур, морфологии и порядка в кристаллических и аморфных полимерах в равновесных условиях. Понимание характера равновесной морфологии позволяет правильно оценить потенциальные возможности, которые дает регулирование структур. [c.47]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура полимера непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц (сегментов), приводящих к изменению ближнего и дальнего флуктуационного порядка, т. е. надмолекулярной организации аморфного полимера. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего при некоторой температуре, называемой температурой стеклования Тс, структура полимера фиксируется. Отсюда следует, что в данном образце застеклованного полимера структура примерно та же, что у незастеклованного полимера в области стеклования. [c.83]

    Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени соверщенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение. [c.138]

    Характер течения полимерных систем зависит как от вида деформации (сдвига, растяжения), так и от скорости потока (квази-статический или динамический режим). В процессе течения полимеров разных молекулярных масс при определенных напряжениях и частотах внешнего воздействия возможен их переход, по данным Виноградова с сотр., из вязкотекучего состояния не только в высокоэластическое, но и в стеклообразное. Наличие у аморфных полимеров структурной упорядоченности флуктуацнонной природы проявляется и в вязкотекучем состоянии, влияя на процессы их переработки. После разрушения надмолекулярной структуры в полимерных системах при действии напряжений в условиях повышенных температур их реологические свойства изменяются (текучесть улучшается). Термообработка полимеров позволяет целенаправленно регулировать характер их надмолекулярной структуры, что важно для установления закономерностей процессов переработки. [c.172]

    С повышением размеров сферолитов уменьшается плотность их упаковки и Стост уменьшается. Некоторое возрастание ст при дальнейшем повышении диаметра сферолитов связано с изменением дефектности структуры ПП. Если при ориентации аморфных полимеров имеет место увеличение их ст, то при вытяжке кристаллических полимеров из-за переориентации и частичного разрушения ламелей. и фибрилл возникает анизотропия укладки структурных элементов и изменение ст (иногда на 2—3 порядка). При использовании полимерных материалов в качестве диэлектриков стремятся к максимальному уменьшению их ст. Для достижения этого полимеры должны содержать минимальное количество ионогенных примесей, их е должна быть по возможности минимальной, сшивание макромолекул должно приводить к повышению Тс и, наконец, они должны иметь (после кристаллизации или ориентации) оптимальную надмолекулярную структуру, которой бы соответствовала наименьшая для полимера данного химического состава и молекулярного строения о. [c.204]

    На практике часто приходится иметь дело с аморфными полимерами, которые по разным причинам или вообще не кристаллизуются или кристаллизуются лишь в незначительной степени. Простейшим элементом надмолекулярной структуры аморфных полимеров является глобг/ла — трехмерное образование, имеющее только ближний порядок в расположении осей макромолекул и размер того же порядка, что и кристаллит. Образование развитых структур, как правило, не наблюдается. [c.102]

    В последнее время эта точка зрения была опровергнута открытием единичных микрокристаллов высокомолекулярных соединений, и сейчас можно утверждать, что любой полимер, способный к кристаллизации, может быть получен в виде единичных кристаллов . Было найдено, что кристаллизации полимеров предшествует упорядочение аморфных полимеров, т. е. тозник-новение аморфных надмолекулярных структур. Достаточно высокая в ряде случаев скорость кристаллизации полимеров подтверждает наличие предварительной упорядоченности макромолекул полимера в аморфном состоянии. Надмолекулярная структура аморфных каучуков характерна наличием пачек цепей, при слиянии которых образуются полосатые структуры каучуков. Кристаллизация происходит сначала в пределах пачек, а затем идет постепенно дальнейшее упорядочение кристаллизованных пачек. [c.85]

    Одним из [таиболее распространенных способов изменения Структуры полимерного материала с целью уцро шения является его вытяжка в процессе переработки При этом происходит ориентация цепей и надмолекулярных структур При регулярном строе НИИ молекул аморфного полимера возможна его крггсталлизация. [c.230]

    Как было показано а главах V и VI, макромолекулы в фазе полимера агрегируются с образованием надмолекулярных структур. Для аморфных полимеров такими структ рами являются пачки или глобулы, кристаллических полимеров наблюдается необычайное многообразие структур, гл а в<1ыми из которых являются сферолиты и кристаллы. [c.445]

    Образующиеся адсорбционные слои играют роль граничной смазки, облегчающей взаимное перемещение надмолекулярных структур в тем большей степени, чем гибче молекулы пластификатора. Увеличивающаяся подвижность структурных образований в ряде случаев способствует их взаимной ориентации, что всегда приводит к возрастанию механической прочности. Поэтому малые добавки пластификатора вызывают не понижение, а повышение проч[[ости некоторых полимеров (см, рис. 199). Для аморфных полимеров это может иметь положительное зР[ачение. Длп кристаллических полимеров увеличение подвижности структур при межструктурной пластиф кации может приводить к резкому ускорению рекристаллизации и возникновению хрупкости, что очень часто наблюдается при пластификации кристаллических полимеров. [c.447]

    При анализе проблемы растворимости в работе [32] исходили из модели надмолекулярной структуры, развитой в работах [92,93], в которых надмоле-ку лярная структура аморфных полимеров моделируется в виде глобул, причем в этих работах сделана попытка обосновать отсутствие большого периода при малоугловом рентгеновском рассеянии. Принято также, rгo каждая глобула состоит из глобул-макромолекул [4,102]. Полагая, что те и другие глобулы связаны дру г с другом поясками связи, рассмотрим наиболее характерный элементарный акт растюрения, те. распада частиц до отдельных глобулярных макромолекул, который схематически изображен на рис.91. [c.334]

    Для объяснения надмолекулярной организации аморфных полимеров было предложено несколько моделей. В. А. Каргин, А. И. Китангородский. Г. Л. Слонимски[ предложили модель согласно которой аморфные полимеры могут состоять либо из глобул, образованных свернутыми макромолекулами, либо И2 развернутых цепей, собранных в пачки. Однако последующие исследования показали, что пачечная> теория ошибочна. Она в частности, находится в противоречии с основными положе ниями кинетической теории высокоэластичности (см. гл. 4), ко торая хорошо подтверждается экспериментом. Так, с позици этой модели практически невозможно объяснить способносп некоторых полимеров к большим обратимым деформациям. [c.52]

    Сканирующая электроЕ1ная микроскопия (СЭМ) позволяет получить изображение микроскопической поверхностной области образца, причем воз-можно получение трехмерного изображения. СЭМ дает увеличение 20— 100 000 раз (чаще всего 20 000—50 000). Разрешающая способность СЭЛ1 несколько меньше ПЭ.М и составляет С 10 нм. Поскольку для СЭЛ не требуется специально готовить образцы, этот метод находит все более широкое применение для изучения морфологии надмолекулярных образований кристаллических и аморфных полимеров. [c.86]

    Цепные молекулы полимеров в блоке расположены не хаотически, а образуют плотно упакованные образования, получившие название надмолекулярных структурПервичными надмолекулярными структурами аморфных полимеров являются пачки, построенные из развернутых цепных молекул, или глобулы, образованные из свернутых цепей Пачки характеризуются наличием дальнего порядка в расположении цепей и отсутствием дальнего трехмерного порядка звеньев. При регулярном строении цепных молекул пачки могут превращаться в кристаллические образования. Кристаллические структуры, возникающие в полимерах, характеризуются большим разнообразием морфологических форм Так, пачки при кристаллизации полимеров [c.154]

    В аморфных полимерах нет полной хаотичности в расположении макромолекул. Ближний неустойчивый порядок у полимеров более совершенен, чем у аморфных низкомолекулярных веществ. Аморфные полимеры - самые упорядоченные из аморфных веществ. У полимеров в аморфном состоянии уже возникают определенные элементы надмолекулярной структуры с довольно высокой степенью упорядоченности, недостаточной однако для образования трехмерной кристаллической решетки. Антиэн-тропийное стремление к самоупорядочению заложено в самой природе полимеров и сыграло важную роль в появлении жизни на Земле. Возникшие в результате самоупорядочения сравнительно простые образования из полимерных молекул (белков, полисахаридов и других биополимеров) постепенно усложнялись, приобрели способность к обмену веществ, передаче наследственности, дифференциации составных частей по структуре и функциям. Так из неживой природы возникло живое вещество (Вернадский) и появились живые существа. Таким образом, возникновение жизни [c.134]

    Существуют синтетические и природные кристаллические полимеры. Полимеры могут кристаллизоваться в ходе синтеза, из расплавов при их охлаждении, из растворов, а также при растяжении высокоупорядоченных фибриллярных аморфных полимеров. При этом могут образоваться разнообразные элементы надмолекулярной структуры в зависимости от природы полимера и условий кристаллизации. При кристаллизации из растворов получают пластинчатые монокристаллы, а из расплавов -блочные полимеры микрокристаллического строения. В природе часто синтезируются фибриллярные криста.1лические полимеры, например, целлюлоза Фибриллярные аморфные полимеры, способные кристаллизоваться при растяжении, называют кри- [c.137]


Смотреть страницы где упоминается термин Аморфные полимеры надмолекулярная: [c.260]    [c.263]    [c.42]    [c.77]    [c.201]    [c.14]    [c.122]    [c.317]    [c.44]    [c.50]    [c.348]    [c.135]    [c.140]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.32 , c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры



© 2025 chem21.info Реклама на сайте