Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специфичность ферментов, анализ

    Благодаря своей высокой специфичности ферменты давно применяются в области аналитической химии. Применение иммобилизованных ферментов способствует созданию методов без-реагентного анализа, позволяющих проводить практически непрерывный анализ водных растворов органических (а в ряде случаев и неорганических) соединений. В свою очередь достижения в этой области стимулируют развитие эффективных методов контроля окружающей среды, клинической диагностики и т. д. Созданные в недавнее время так называемые ферментные электроды применяются в быстром автоматическом анализе многокомпонентных систем. Наконец, разработаны чувствительные ферментативные методы с использованием термисторов, в том числе, и с ферментными термисторами . [c.16]


    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]

    С другой стороны, эти ферменты сильно различаются по специфичности их действия. Так, сериновые протеазы а-химотрипсин и эластаза осуществляют гидролиз пептидной связи, образованной аминокислотой, содержащей в положении гидрофобную боковую группу R при этом специфичность а-химотрипсина определяется объемным гидрофобным радикалом в молекуле субстрата (типа боковой группы фенилаланина, триптофана), а для эластазы — метильной группой аланина. Механизм наблюдаемой специфичности обусловлен весьма незначительными различиями в строении активных центров этих двух ферментов. По данным рентгеноструктурного анализа, в активном центре а-химотрипсина имеется довольно вместительный гидрофобный карман , где связывается ароматическая боковая группа гидролизуемого пептида (рис. И, а ср. с рис. 9). В активном центре эластазы размеры сорбционной области, где происходит связывание метильной группы субстрата (рис. 11, б), намного меньше, чем в случае а-химотрипсина. Это вызвано тем, что вместо Gly-216 и Ser-217 см. рис. 9) в соответствующих положениях эластазной пептидной цепи расположены более объемные остатки треонина и валина [3]. [c.35]

    Субстратная специфичность химотрипсина. Специфические каталитические свойства ферментов обусловлены многоточечным (многоцентровым) взаимодействием между субстратом и белком [54] (см. гл. I и II). В многоцентровом взаимодействии фермент — субстрат важная роль отведена сорбции на белке боковых, химически инертных фрагментов субстратной молекулы. При анализе этого вопроса для реакций, катализируемых химотрипсином, будем исходить из модельной структуры [55 его субстратов  [c.132]


    В последние годы благодаря использованию ферментов функции ионселективных электродов удалось существенно расширить и сделать их применимыми для быстрого клинического анализа на глюкозу, мочевину, аминокислоты и другие метаболиты. Такие электроды называются ферментными электродами или электрохимическими сенсорами. Создание электродов с указанными свойствами оказывается возможным благодаря тому, что ряд ферментов обладает высокой специфичностью, т. е. способностью катализировать превращения одного единственного вещества из многих сотен и даже тысяч веществ близкой химической природы. Если, например, фермент катализирует реакцию, в ходе которой изменяется pH среды, то рН-чувствительный электрод, покрытый пленкой геля или полимера, содержащей этот фермент, позволит провести количественное определение только того вещества, которое превращается под действием данного фермента. Из мочевины в присутствии фермента уреазы образуются ионы МН+. Если ионселективный электрод, чувствительный к ионам ЫН , покрыть пленкой, содержащей уреазу, то при помощи его можно количественно определять мочевину. Ферментные электроды — один из примеров возрастающего практического использования ферментов в науке и технике. [c.138]

    Наиболее широко распространенным методом является, вероятно, анализ С-концевых групп, основанный на специфичности фермента панкреатической карбоксипептидазы, которая гидролизует пептидную связь, ближайшую к карбоксильной группе белка [135]. Образующуюся свободную аминокислоту идентифицируют хроматографией на бумаге. Этот метод имеет много ограничений, но успешно использовался для большого числа белков и пептидов. [c.155]

    Главные цели изучения биокатализа, по-видимому, можно ограничить следующими тремя. Во-первых, достижением понимания принципов стереохимического механизма ферментативного катализа и возможностью количественного описания, исходя из знания структур взаимодействующих молекул, каталитического акта как спонтанно протекающего, взаимообусловленного на всех своих стадиях непрерывного процесса. Во-вторых, выяснением в каждом конкретном случае причины специфичности фермент-субстратных и фермент-ингибиторных взаимодействий. В-третьих, целенаправленным конструированием наборов ингибиторов, обладающих наперед заданными свойствами. Возникающие при достижениях этих целей проблемы и возможные подходы к их разрешению будут подробно обсуждены в четвертом томе монографии "Проблемы белка". А сейчас попытаемся ответить на вопрос о том, что нового привнес рентгеноструктурный анализ в изучение аспартатных протеиназ и в какой мере знание трехмерных структур ферментов и их ингибиторных комплексов смогло углубить понимание механизма каталитической реакции аспартатных протеиназ. Ответ на этот вопрос имеет общее для энзимологии значение, поскольку, как отмечалось, протеиназы являются наиболее изученными во всех отношениях объектами биокатализа. Рассмотрим гипотетические модели механизма действия аспартатных протеиназ, в основу разработки которых были положены данные о трехмерных [c.98]

    Анализ таких зависимостей для большого числа субстратов ряда протеаз показал [2040], что существует определенная взаимосвязь между значениями и проявляющаяся особенно для однотипных субстратов (например, пепти дов), имеющих сходную или одинаковую группировку, определяющую первичную специфичность фермента [1715]. Эта зависимость выражается в том, что для серии субстратов увеличение сопровождается лишь незначительным изменением до тех пор, пока значения не превысят некоторую, характерную для данного фермента, величину, после чего наблюдается тенденция к постоянству и уменьшению Иными словами, наблюдается переход от проявления специфичности в максимальных скоростях к ее проявлению в связывании субстрата (рис.67). [c.189]

    Специфичность действия химотрипсина. Анализ понятия специфичность фермента провели Бендер и Кежди [7]. Из этого емкого термина имеет смысл выделить три типа специфичности специфичность к среде, специфичность к реакции и субстратную специфичность. [c.131]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]


    Высокая субстратная специфичность ферментов делает их совершенно уникальными аналитическими реактивами с помощью фермента можно определить его субстрат в смеси, содержащей множество других веществ. Ферментные методы определения концентрации метаболитов в крови и других жидкостях организма широко используются в практике клинического лабораторного анализа. Этими методами измеряют содержание глюкозы, мочевины, мочевой кислоты, молочной кислоты, креатинина, холестерина, триацилглицеринов и других веществ. [c.100]

    Иммуноферментвый анализ (ИФА) является в настоящее время одним из наиболее активно развивающихся направлений аналитической биохимии. В этом методе высокая чувствительность определения ферментной метки (менее 10 М) сочетается с уникальной специфичностью иммунохимического анализа. Достижению высокой чувствительности ИФА способствует использование различных инструментальных методов для регистрации активности ферментов — спектрофотометрических, флуориметрических, хеми- и биолюминесцентных, электрохимических. [c.115]

    В последние годы благодаря использованию ферментов функции ионселективных электродов удалось существенно расширить и сделать их применимыми для быстрого клинического анализа на глюкозу, мочевину, аминокислоты и другие метаболиты. Такие электроды называются ферментными электродами или электрохимическими сенсорами. Создание электродов с указанными свойствами оказывается возможным благодаря тому, что ряд ферментов обладает высокой специфичностью, т. е. способностью катализировать превращения одного-единственного вещест- [c.157]

    При анализе полученных результатов путем сравнения зон окрашивания в контрольных и опытных столбиках геля выделяют полосы, специфичные для изучаемого фермента. [c.338]

    Наиболее важным отличием ферментативного катализа от обычного химического является наличие стадии связывания, приводящей к образованию фермент-субстратного комплекса. Как мы уже видели, при попытках достижения скоростей и специфичностей, характерных для ферментативного катализа, в бимолекулярных реакциях между простыми соединениями эта стадия наиболее трудна в воспроизведении. Ясно, что связывающие центры ферментов должны иметь высокоорганизованную структуру. В связи с этим наиболее полную информацию об этих центрах можно получить, как это и можно предположить, нз данных рентгеноструктурного анализа. [c.510]

    Наконец, отметим еще одно интересное направление расширения объектов полярографического анализа — применение электродов с иммобилизованными ферментами, которые обеспечивают высокую специфичность по отношению к определяемому веществу. Такие электроды особенно эффективно применяются при вольтамперометрических анализах различных биологических объектов (определение глюкозы, лактозы в крови и др.). Детальные сведения о таких электродах см., например, [88. Заметим, что в этом методе удачно сочетаются высокая специфичность действия ферментов с достаточно высокой селективностью вольтамперометрии. [c.70]

    Такая техника иммобилизованных ферментов соединяет уникальные возможности двух видов катализаторов специфичность ферментов со стабильностью, простотой в обращении н хранении гетерогенных катализаторов на подложке, более того, иммобилизованные ферменты можно использовать повторно, а также применять для синтеза в потоке. Поэтому они находят все более широкое прнме-нёние в различных областях анализа и в медицине. [c.259]

    Высокая специфичность ферментов позволяет разрабатывать специфические детекторы на различного рода соедиисиия для целей количественного анализа [85—94]. В подобных датчиках определение ведется путем регистрации появления или исчезновения какого-либо электрохимически активного соединения. Использование биоэлектрокаталитических эффектов на основе прямого переноса электронов между активным центром фермента и электродом может существенно упростить создание таких систем. [c.92]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Самым важным свойством ферментов и поэтому главным преимуществом ферментативных анализов является их специфичность. Ферменты способны катализировать определенную реакцию данного субстрата даже при условии, что возможны другие реакции с участием этого субстрата и что могут присутствовать близкие гомологи этого субстрата [13]. Например, глюкозоксидаза катализирует окисление -D-глюкозы до глюконовой кислоты. Однако многие другие окисляемые сахара и их производные реагируют в присутствии глюкозоксидазы со скоростью, не превыша- [c.51]

    Иммобилизованные ферменты применяют для автоматического анализа биологических субстратов и лекарственных веществ как покрытые электроды (электрохимические датчики, на которые нанесен слой иммобилизованного фермента) в методах сухой химии (слои реагентов и ферментов, при прохождении через которые происходит реакция и образуется окрашенное вещество). 2. Иммуноферментный анализ используют для определения природных лекарственных веществ и ксенобиотиков. Суть его в том, что молекула фермента, соединенная с антигеном или антителом, служит индикатором реакции антиген - антитело в среде. Измеряя активность фермента, можно сказать, сколько молекул антигена вступило в иммунохими-ческую реакцию с антителом. 3. Биотехнология лекарственных препаратов предполагает использование иммобилизованных ферментов в синтезе лекарств. За счет специфичности ферментов в оптималь- [c.478]

    Наблюдаемые различия в структуре ферментов можно объяснить в основном дивергентной эволюцией родоначальной формы. Различие в аминокислотной последовательности данного фермента в случае родственных видов может быть весьма незначительным и очень мало сказываться на его специфичности и каталитической активности. Однако в случае неродственных видов такие различия бывают более существенными, хотя фермент по-прежнему выполняет ту каталитическую функцию, по которой его определяют и дают название. Степень гомологичности между аминокислотными последовательностями разных форм фермента в таких случаях весьма невелика, и более информативным становится сравнение трехмерной структуры, определяемой с помощью рентгеноструктурного анализа кристаллов фермента. Концепция эволюционной дивергенции была применена к семьям родственных ферментов, таких, как сери-новые протеиназы поджелудочной железы, NAD-зависимые дегидрогеназы [435, 3649]. Анализ аминокислотных замен помог установить, какой из остатков важен для активности фермента или его специфичности. Рентгеноструктурный анализ показал, что у лактат-, малат-, алкоголь- и глицеральдегид-фосфатдегидрогеназ строение коферментсвязывающих участков весьма сходно (см. с. 669—671), но субстратсвязывающие участки и остальные части молекулы ферментов различаются. [c.105]

    Анализ данных таОл.56 позволяет сделать вывод о том, что специфичность фермента может определяться изменением как энтальпии, так и энтропии активации. Относительный вклад каждого из этих параметров зависит от типа катализатора и выбранной серии субстратов. Так, скорость деацилирования К-ацил-аминоацилхимотрипсинов определяется, в основном, изменением энтальпии активации (см. рис.60), тогда как переход от этих производных к соответствующим производным фермента, ацилированного алифатическими кислотами, приводит к изменению энтропии активации стадии деацилирования, а энтальпия процесса изменяется очень мало [1992]. Энтальпийный "контроль четко проявляется при пепсиновом катализе, тогда как в случае эластазы преобладает вклад энтропии. [c.229]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Ясно, что эти данные могут быть интерпретированы более простым образом, а именно что способ действия фосфорилазы (априорно принятый в цитируемой работе [16] как канонический для неупорядоченного действия фермента) несколько отличается от способа действия р-амилазы, что приводит к различному распределению продуктов деструкции полимерного субстрата по молекулярным массам (степени полимеризации). Как неоднократно указывалос . выше, это наиболее характерный признак действия деполимераз, и в рамках кинетики и субстратной специфичности действия ферментов он обусловлен различной зависимостью кинетических параметров ферментативной реакции от степени полимеризации (длины цепи) олигосахаридов. С точки зрения термодинамики действия деполимераз этот характерный признак объясняется различным числом сайтов в активном центре фермента, различным их сродством к мономерным остаткам субстрата и положением каталитического участка в активном центре. Как видно, и в этом случае введение гипотезы о множественной атаке было излишним и преждевременным, так как экспериментальные данные, полученные авторами работы [16], не были подвергнуты тщательному анализу. [c.91]

    Главная особенность ферментов как инструментов структурного анализа полисахаридов — высокая, в некоторых случаях абсолютная, специфичность их действия. Ферменты, расщепляющие полисахариды (полисахарида-зы), как правило, абсолютно специфичны к конфигурации гликозидной связи (например, фермент, настроенный на гидролиз а-гликозидной связи, совершенно не действует на р-гликозидные связи), абсолютно специфичны к размеру цикла моносахаридного остатка и высоко специфичных к структуре и конфигурации самого моносахаридного звена. Кроме того, и это особенно важно для установления строения полисахаридов, полисахаридазы обычно высоко и.збирательны к типу связей и к структуре остатков в ближайшем окружении к расщепляемой гликозидной связи. Позтому уже сам факт расщепления определенной связи данным ферментом нередко дает много сведений о ближнем порядке остатков в этом участке цепи (пример такой избирательности лизоцима мы уже рассматривали в другом аспекте). [c.102]

    Короткие последовательности с Л/-конца белков часто идентифицируют, используя ферментативную деградацию. Промышленность производит несколько аминопептидаз, отличающихся специфичностью. Лейцинаминопептидаза из почек свиньи, как следует из ее названия, гидролизует преимущественно лейцин и сходные аминокислоты с гидрофобными боковыми группами. Несмотря на то, что скорости расщепления, Л/-концевых аминокислот лежат в широких пределах, гидролиз желательно продолжать до конца, за исключением аминокислоты, предшествующей пролину. Вследствие столь широкого изменения скоростей расщепления следует соблюдать осторожность при интерпретации результатов анализа деградации, катализируемой этим ферментом. Чрезвычайно важно отбирать пробы для анализа в течение деградации. Например, при анализе белка с Л/-концевой последовательностью А1а-Ьеи-Ьеи. .. на ранних стадиях деградации выход аланина превышает выход лизина, однако при большом времени гидролиза соотношение меняется на обратное [24]. Другой фермент, выделенный из почек свиньи, ами-нопептидаза М, гораздо менее специфичен и, по-видимому, более пригоден для расщепления белков. [c.271]

    Другие протеиназы — пепсин, папаин и некоторые ферменты микробов, обладают низкой специфичностью и, как правило, дают слищком много фрагментов, чтобы их можно было использовать при анализе последовательности аминокислот. Однако как отмечалось выше, эти ферменты хорощи для получения малых пептидов, содержащих характерные особенности, например дисульфид-ную связь. [c.277]

    Современная энзимология представляет собой бурно развивающуюся науку. Ее достижения находят все более широкое применение в различных областях практической деятельности человека, н прежде всего в медицине и биотехнологии. В последние годы благодаря стремительному совершенствованию технической базы исследований и производства были выделены и подробнее охарактеризованы десятки новых ферментов, катализирующих самые разнообразные химические реакции. Очевидно, нет необходимости убеждать читателя в том, что по-настоящему эффективное практическое использование огромного объема фактических данных, накопленных в результате лабораторных исследований, невозможно без их всестороннего теоретического анализа и осмысления, без глубокого понимания принципов действия биологических катализаторов— ферментов. Здесь уместно напомнить, что уникальные свойства ферментных катализаторов — поразительная специфичность и огромная удельная активность — обусловливаются сочетанием сравнительно несложных закономерностей физической и физикоорганической химии. Ясно поэтому, что путь к свободному овладению фундаментальными представлениями науки о ферментах как мощным инструментом практической энзимологии лежит через постижение основ классического органического катализа. Главная цель предлагаемой вниманию советских читателей книги М. Бендера, Р. Бергерона и М. Ко-миямы как раз и состоит в том, чтобы помочь начинающим работать в области энзимологии преодолеть этот нелегкий путь. [c.5]


Смотреть страницы где упоминается термин Специфичность ферментов, анализ: [c.16]    [c.138]    [c.415]    [c.511]    [c.205]    [c.269]    [c.65]    [c.179]    [c.105]    [c.158]    [c.344]    [c.378]    [c.345]    [c.289]    [c.496]    [c.505]    [c.288]    [c.80]    [c.277]    [c.227]    [c.166]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ специфичность



© 2024 chem21.info Реклама на сайте