Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки ras-Белки

    Глобулярные белки. Белки, для которых характерна более выраженная сферическая форма, чем для фибриллярных белков (см. ниже). Большинство глобулярных белков кристаллизуется нз раствора и может поэтому служить объектом для точного рентгеноструктурного анализа. Ферменты являются глобулярными белками. [c.413]

    Биологическая функция — это вклад некоего составляющего элемента в действие всей системы. Это означает, что функцию белка следует изучать в связи с более высокими уровнями функциональной иерархии [729]. В случае гемоглобина, например, такими более высокими уровнями являются циркуляция и метаболизм. Химотрипсин выполняет определенную функцию в системе пищеварения, перерабатывая белки пищи, а также функцию в системе защиты организма, инактивируя вредные полипептиды (некоторые гормоны, токсины и вирусные белки) до того, как они смогут атаковать эпителиальный барьер. Вопрос, относящийся к функции каково назначение белка  [c.273]


    Наиболее выпукло способность к узнаванию выражена у белков иммунной системы — уже упоминавшихся в 1.4 иммуноглобулинов, или антител. Иммуноглобулины определенной специфичности начинают активно вырабатываться организмом в ответ на появление чужеродного антигена и обладают способностью избирательно связывать именно этот антиген. Если в роли антигена выступает большая молекула, например молекула белка, то антитело опознает не всю молекулу, а некоторый ее участок, называемый антигенной детерминантой. Белковые молекулы обычно имеют серию антигенных детерминант, и уже по этой причине в ответ на появление в организме чужеродного белка вырабатывается целый набор антител, направленных на разные детерминанты. Более того, к каждой детерминанте вырабатывается, как правило, несколько различных иммуноглобулинов. Поэтому даже иммуноглобулины, специфичные к одному определенному антигену, представляют собой не индивидуальные белки, а смесь большого числа сходным образом построенных молекул. А так как организм непрерывно встречается с разнообразными антигенами, то фракция иммуноглобулинов сыворотки крови представляет собой смесь огромного числа различных антител, причем содержание каждого из них, как правило, очень мало. Трудность выделения индивидуальных иммуноглобулинов долгое время была препятствием для их биохимического исследования, в том числе для установления их первичной структуры. [c.38]

    В последние годы исследованию окружения аминокислотных остатков в белках и их доступности для реагентов уделяется особенно много внимания, что объясняется многими причинами. Во-первых, познание реакционной способности каждого аминокислотного остатка в связи с непосредственным окружением приведет к пониманию различных химических свойств белков и ферментов. Например, механизм действия ферментов можно описать с точки зрения сродства и повышенной реакционной способности аминокислотных остатков активного центра по отношению к субстрату. Во-вторых, доступность аминокислотных остатков действию реагентов зависит от конформационных изменений белков, вызываемых сменой pH, температуры, ионной силы, взаимодействием с субстратом и т. д. Изучая доступность для реагентов отдельных остатков в различных условиях, можно делать выводы о структуре нативных белков. В-третьих, молярные доли остатков в различных состояниях обычно определяют путем измерения кругового дихроизма (дисперсии оптического вращения), параметров ионизации, спектральных смещений при образовании водородных связей или других изменений в окру- [c.344]


    Белки. Белки, или протеины,— природные высокомолекулярные (стр. 310) азотистые вещества, молекулы которых являются самыми сложными из всех соединений. Белки — необходимая составная часть всех живых организмов. Количественный состав белков варьирует в сравнительно узких пределах С—50-i-- 55% Н-6,5ч-7,3% N-15,04-17,6% 0-21,5-г-23,5% S-0,3- -2,5% Р и галогены встречаются лишь в некоторых белках. [c.308]

    От физико-химического состояния структурных белков зависит проницаемость и возбудимость клеток [89], их способность образовывать комплексы с другими клетками [90] и ряд других их свойств [91]. Фибриллярные белковые частицы можно изучать при помощи электронной микрографии. Электронные микрограммы мышечных белков [92, 93], белков кожи [94] и других органов [95] показали наличие отчетливой фибриллярной структуры белковых частиц этих органов. Следует, одиако, помнить, что, с одной стороны, фибриллярная структура присуща далеко не всем белкам, с другой же, иногда и такие глобулярные белки, как инсулин, гемоцианин или вирусные белки, также могут образовывать фибриллярные частицы. Подобное превращение из глобулярного состояния в фибриллярное часто оказывается обратимым [96]. [c.396]

    Исследуя наиболее хорошо изученные к тому времени белковые вещества (альбумины плазмы крови и яичного белка, фибрин, казеин и т. д.), Мульдер установил, что они содержат различные количества фосфора и серы, которые, как тогда полагали, входили в состав белков в виде фосфорнокислых или сернокислых солей натрия, калия или кальция. Мульдер считал, что кроме этих связанных форм фосфора и серы белки содержат некоторые количества свободной серы, а в отдельных случаях — свободного фосфора. При этом подразумевалось, что свободные сера и фосфор как-то связаны только с радикалами белковой молекулы. Количественно анализируя полученную при сжигании белков золу и определив в ней содержание серы и фосфора, ученый, сопоставив полученные им данные процентного содержания этих элементов, а также углерода, кислорода, водорода и азота и вычисленные им молекулярные веса отдельных белков, пришел к результатам, почти ничего не добавившим к уже известным тогда фактам [330, 334]. Выведенные им молекулярные веса отдельных белковых веществ и процентное содержание в них отдельных элементов представляли собой величины такого Же порядка, что и найденные его предшественниками. После этих предварительных опытов Мульдер попытался выделить из белковых веществ отдельные, составляющие их фрагменты, используя для этого уже известные ранее приемы — воздействие слабых растворов кислот при 50—60° С. Для гидролиза белка он впервые использовал щелочь. При этом было обнаружено, что при обработке раствором едкого калия при 50° С фибрина, сывороточного или яичного альбумина, предварительно очищенных смесью спирта, эфира и слабой соляной кислоты, происходило полное растворение белков. При нейтрализации полученного раствора слабой уксусной кислотой выпадал белый хлопьевидный осадок, который, как и предполагал Мульдер, был полностью лишен свободной серы и свободного фосфора. Определив элементарный состав и процентное содержание углерода, водорода, азота и кислорода и вычислив молекулярный вес этих осадков, ученый обнаружил, что независимо от того, какой белок [c.30]

    Принцип действия клеточного дисплея заключается в экспрессии на поверхности клеток гетерологичных белков (белков-пассажиров), которые отсутствуют у данного организма, объединенных в составе гибридной молекулы с помощью пептидного спейсера с полипептидной цепью белка-носителя, обеспечивающего заякоривание всей конструкции в мембране клеток. При этом используют гибридные белки трех типов, в которых белок-пассажир находится на N-конце, С-конце или во внутренней части белка-носителя в виде сэндвича. Для успешного выполнения своих функций белки-носители должны отвечать, по крайней мере, четырем требованиям 1) обладать эффективной сигнальной или транспортной последовательностью, обеспечивающей прохождение гибридного белка через внутренние мембраны клеток 2) проявлять сильные якорные свойства для прочного удерживания белка-пассажира на поверхности клеток 3) должны быть совместимыми с белками-пассажирами, т.е. не дестабилизироваться после объединения с ними 4) демонстрировать устойчивость к протеолитическим ферментам, присутствующим в периплазматическом пространстве или культуральной жидкости. В качестве векторов для генов гибридных белков используют экспрессирующие плазмиды или хромосомы вирусов. [c.350]

    Транспорт бактериальных белков. Белки бактерий, локализованные в периплазме или внешней мембране, должны пересечь внутреннюю мембрану, чтобы прибыть по назначению. Кроме того, известно, что бактерии экскретируют некоторые ферменты во внешнюю среду. Все эти процессы напоминают импорт белков митохондриями. В обоих случаях транспортируемый полипептид содержит дополнительную лидерную последовательность, транспорт которой требует энергии. [c.167]


    Эмиль Фишер, который ранее установил детальное строение молекул сахаров (см. гл. 7), в начале нашего века обратил внимание на молекулу белка Он показал, что аминогруппа одной аминокислоты связана с остатком молекулы другой кислоты пептидной связью. В 1907 г. Фишер получил соединение, объединяющее восемнадцать аминокислот, и показал, что оно обладает рядом свойств, характерных для белков. [c.129]

    Фибриллярные белки Белки, образующие нитевидные или слоистые структуры, например, в волосах, мышцах, коже [c.548]

    Аминокислоты выполняют роль структурных единиц, из которых состоят все животные и растительные белки. Белки — это природные высокомолекулярные органические вещества (биополимеры), макромолекулы которых построены из огромного числа остатков аминокислот (в различном сочетании), соединенных между собой пептидными связями (—СО—ЫН—). Около 20 аминокислот входят в белковые вещества в качестве постоянных и незаменимых составных частей (табл. 51). [c.104]

    Растения используют азот для синтеза нескольких азотсодержащих соединений, в том числе белков. Белки образуются из аминокислот, представляющих собой соединения такого типа  [c.320]

    Белки-это макромолекулярные соединения, имеющиеся во всех живых клетках. Они служат важнейшим строительным материалом в тканях животных, являются главной составной частью кожи, хрящей, ногтей и мышц. К белкам относятся и ферменты-катализаторы биохимических реакций, протекающих во всех живых организмах. Белки осуществляют перенос жизненно важных веществ в организме. Например, гемоглобин, который переносит О2 от легких к клеткам, представляет собой белок. Антитела, выполняющие в организме защитную функцию (защищают от вредных веществ), тоже состоят из белков. [c.444]

    Аминокислоты, полипептиды, белки. Белки и полипептиды как полимеры а-аминокислот. Понятие о роли белков и полипептидов в живых организмах. [c.248]

    Какие химические процессы лежат в основе супрессии (подавления) одной мутации другой мутацией, локализованной в иной точке хромосомы Однозначного ответа на этот вопрос дать нельзя. Редко мутация супрессируется другой мутацией, локализованной в пределах того же самого гена. Такой эффект может быть назван внутригенной комплементацией. Предположим, что мутация приводит к такой аминокислотной замене, которая нарушает стабильность структуры или функцию белка. Возможно, что мутация в другом сайте, захватывая остаток, взаимодействующий с замещенной аминокислотой, меняет характер взаимодействия двух остатков, что приводит к восстановлению функциональной активности белка. Так, например, если боковая цепь первой аминокислоты мала, а в результате мутации она замещается на более длинную боковую цепь, то вторая мутация, приводящая к уменьшению размера другой боковой цепи, может позволить образующемуся белку свертываться и функционировать подобно нормальному белку. Такой случай был обнаружен среди мутантов триптофансинтетазы [144]. Мутанты этого белка, у которых Gly-211 был заменен на Glu нли Туг-175— на ys, синтезировали неактивные ферменты, тогда как двойной мутант, т. е. мутант, в котором имели место обе эти замены, синтезировал активную триптофансинтетазу. Считают, что в большинстве случаев внутригенной супрессии происходят изменения во взаимодействии субъединиц олигомерных белков. [c.255]

    В отличие от сложных белков, белки одноклеточных организмов (БОО) используются как пищевая добавка. Обогащением белковыми добавками на основе БОО улучшают качество растительного белка. Эти добавки повышают содержание витаминов, микроэлементов, а главное — аминокислот, несинтезируемых многими растениями. Производство пищевых белков измеряется миллионами тонн в год и постоянно растет. Микробиологический синтез белка, продукт которого представляет собой инактивированную массу клеток, — основной [c.429]

    До появления технологии рекомбинантных ДНК многие лекарственные препараты на основе белков человека удавалось получать только в небольших количествах, их производство обходилось очень дорого, а механизм биологического действия иногда был недостаточно изучен. Предполагалось, что с помощью новой технологии можно будет получать весь спектр таких препаратов в количествах, достаточных как для их эффективного тестирования, так и для применения в клинике. И эти ожидания оправдались. На сегодняшний день клонировано более 400 генов (в основном в виде кДНК) различных белков человека, которые в принципе могут стать лекарственными препаратами. Большинство этих генов уже экспрессированы в клетках-хозяевах, и сейчас их продукты проходят проверку на возможность применения для лечения различных заболеваний человека (табл. 10.1). Впрочем, хотя более 30 таких биотехнологических препаратов и получило одобрение в США (табл. 10.2), пройдет еще несколько лет, прежде чем они будут рекомендованы для широкого использования и поступят в продажу вначале их подвергнут проверке на животных и проведут тщательные клинические испытания. Однако фармацевтические фирмы уже сейчас проявляют к ним интерес. По подсчетам специалистов, ежегодный объем мирового рынка лекарственных препаратов на основе белков человека составляет около 150 млрд. долларов и постоянно растет. Объем мирового рынка лекарственных средств на основе рекомбинантных белков увеличивается на 12—14% в год и к 2000 г. составит примерно 20 млрд. долларов. [c.204]

    Совершенно естественно встал вопрос о пределах возможного увеличения и уменьшения количества белка в пище. Если кормить животное таким образом, чтобы покрыть полностью энергетические потребности организма углеводами и жирами, т. е. исключить совсем белки из пищи, то азотистый баланс становится отрицательным. При безбелковой диете в течение всего времени питания организм все же выделяет с мочой азотистые вещества. Так как организм в данном случае не получает белка извне, то это явление указывает на то, что в организме беспрестанно происходит распад белка собственных органов и тканей. Распад собственных белков организма связан с функциональной деятельностью органов, с выделением образовавшихся из белков секретов и экскретов (ферментов пищеварительных соков, некоторых гормонов и т. д.), отмиранием и удалением некоторых тканей (удаление волос и ногтей, слущиваиие эпидермиса) и т. п. Азотистый баланс при такого рода питании остается все время отрицательным, и если опыт безбелкового питания длится долго, то это неизбежно приводит к смерти животного. [c.304]

    Из соединений белков с тяжелыми металлами заслуживают упоминания природные соединения белка с медью, например гемокупреин из эритроцитов крови быка [59], гепатокупреин из печени [59], гемоциапипы крови некоторых видов беспозвоночных (см. гл. XI) и содержащие медь оксидазы [60]. Медь содержится не только в растворимых белках печени, но также и в нерастворимом остатке, который получают после экстракции разбавленным аммиаком [61]. Повидимому, во всех этих соединениях ионы меди связаны с отрицательно заряженными группами белка. Подобным же образом соединяются белки с медью и in vitro. Связывание меди сывороточным альбумином сопровождается освобождением свободной энергии F снижается от —5 179 кал на [c.88]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    На всем протяжении этой книги неоднократно подчеркивается, что во избежание денатурации белков следует использовать мягкие способы их обработки. Существует целый ряд. очень устойчивых ферментов, выдерживающих экстремальные условия окружающей среды. Эту исключительно высокую стабильность можно использовать, подвергая неочищенный препарат воздействию таких условий. При этом ненужные белки денатурируют и выпадают из раствора в осадок. В процессе денатурации происходит разрушение третичной структуры белковой молекулы и образуются неупорядоченные полипептидные цепи. В растворе они взаимодействуют между собой и агрегируют. Агрегация происходит под действием физических сил и в некоторой степени в результате химических взаимодействий через образование —5—5-связей. Тем не менее при низких концентрациях солей и значениях pH, далеких от изоэлектрической точки, денатурированные белки могут находиться в полностьк> растворимом состоянии и осаждаться только при достижении определенного значения pH. Растворимость денатурированных белков может быть обусловлена силами отталкивания между отдельными заряженными пептидными цепями. По мере приближения pH к изоэлектрической точке белки могут претерпевать агрегацию, которой способствует также высокая концентрация соли, снижающая внутримолекулярные силы отталкивания. [c.83]

    Инсулин влияет также на синтез белков, изменяя, по-видимому, скорость трансляции. После инкубации с инсулином в клетках происходит фосфорилирование рибосомального белка 65 с молекулярным весом 31 ООО. Фосфорилирование этого белка достигает максимума уже спустя 5 мин после инкубации клеток с инсулином. Этот процесс коррелирует с ускорением транспорта глюкозы, однако весьма вероятно, что он имеет отношение и к белковому синтезу. Фосфорилирование рибосомального белка подавляется антителами на инсулин, но ускоряется антителами на инсулиновый рецептор. Циклические нуклеотиды и a не имитируют этого эффекта. В то же время, экстракт из клеток,, преинкубированных с инсулином, также вызывает фосфорилирование белка 65. Возможно, при связывании инсулина с рецептором в клетке образуются неизвестные пока посредники ( вторичные мессенджеры ). Существует предположение, что под действием инсулина от рецептора отщепляется фрагмент (короткий пептид), который покидает плазматическую мембрану, проникает в цитоплазму и осуществляет свое регуляторное влияние на внутриклеточные структуры. Нельзя исключить и того, что инсулин вызывает выход протеинкиназы из мембраны и последующее взаимодействие с рибосомой. [c.172]

    Фосфорилирование белков, в котором, участвуют циклические нуклеотиды, является не менее важным и не менее распространенным регуляторным процессом, чем такие механизмы регуляции, как изменение проницаемости мембран (см. раздел 4.1) или индукция — репрессия синтеза белков (см. раздел 4.3). В то же время, среди способов химической модификации фосфорилирование — лишь один из путей регуляции функциональной активности белка, протекающий наряду с метилированием, аденилированием, АДФ-рибозилированием, ацетилированием и процессингом белков (см. раздел 1.3). Как мы видели, среди реакций фосфорилироваиия циклические нуклеотиды — весьма важные, но не единственные регуляторы. [c.206]

    Большой класс онкогенов и протоонкогенов, открытых таким путем, был назван ras-генами (так как они впфвые были обнаружены в вирусах, вызывающих сфкому у крыс-rat sar oma). Эти гены кодируют G-белки, которые находятся на внутренней поверхности плазматической мембраны и здесь связывают и гидролизуют GTP. Эти ras-белки, кодируемые вирусными ras-онкогенами, отличаются от нормальных ras-белков (кодируемых протоонкогенами) заменой аминокислоты в одном из двух положений. Этого, как правило, достаточно для нарушения GTP-азной активности, а вместе с ней и механизма собственной инактивации G-белка (разд. 12.3.4). Если в культивируемые клетки ввести антитела против продуктов ras-протоонкогенов, то эти клетки теряют способность делиться в ответ на воздействие ростовых факторов. На этом основании полагают, что ras-белки каким-то образом участвуют в сопряжении рецепторов для факторов роста с внутриклеточными белками-эффекторами. Природа эффекторных белков и механизм сопряжения остаются невыясненными, хотя накапливается все больше данных о том, что эффекторные белки могут регулировать фосфоинозитидный путь передачи сигнала - по крайней мфе это одна из их функций. ras-Белки- [c.367]

    Глобулярные белки Белки, молекулы котс ых свернуты в шарообразную структуру. Такие белки растворимы в воде, так как их полярные группы обращены наружу, а неполярные спрятаны внутрь глобулы [c.544]

    Глобулярные белки. Систематические исследования парциальной сжимаемости глобулярных белков проводились в ряде работ [161, 190, 199—201], но только в работе [161] выполнен анализ аддитивности гидратационного эффекта поверхности нескольких белков (рибонуклеазы, лизоцима и миоглобина). Экспериментальные значения приведены на шкале удельных парциальных сжимаемостей (рис. 3.12). Это положительные величины, так как отрицательный гидратационный член АКп с избытком компенсируется большим положительным вкладом собственной сжимаемости /См (релаксационный вклад Кте1 не учитывается в анализе, так как он мал, как было показано в работе [200]). Величина /См/М определена в работах [161, 190] как средняя для всех глобулярных белков, и ее значение 10 м (г-Па) приведено на рис. 3.12. Отклонение экспериментального значения парциальной сжимаемости белка от величины /См характеризует гидратационный вклад, который можно сравнивать с величиной, полученной на основании аддитивных расчетов. [c.60]

    Белки состоят в основном из /.-аминокислот, характеризующихся определенными значениями [а]в. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —ЫН—СНК—СО— (звездочка отмечает асимметрический атом углерода, К — боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее щироко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы л->л и /г—>-я вносят различные вклады в оптическую активность полипептидных цепей, находящихся в различных конформациях соответственно спектры ДОВ и КД полипептидов в различных конформациях отличаются друг от друга. На рис. 24 приведены спектры ДОВ и КД модельных полипептидов в конформациях статистического клубка, [c.45]

    Фкбрнллярные белки представляют собой волокнистые вещества, большей частью нерастворимые в воде и солевых растворах. Полипептидные цепи в них образуют пучки, будучи ориентированы параллельно друг другу в направле[пти волокна. Пол[нтептидиые цепи таких белков рассматриваются как отдельные химические образования. К этог группе относятся кератин, миозин, фибриноген, коллаген и др. Рентгенографические исследования привели к выводу, что во многих из i rx полипептидные цепи закручены в спираль таким образом, что внугры [c.396]


Смотреть страницы где упоминается термин Белки ras-Белки: [c.155]    [c.69]    [c.60]    [c.533]    [c.76]    [c.31]    [c.23]    [c.277]    [c.44]    [c.34]    [c.367]    [c.488]    [c.345]    [c.69]    [c.115]    [c.99]    [c.86]    [c.120]    [c.184]    [c.70]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.360 , c.367 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.360 , c.367 ]




ПОИСК







© 2025 chem21.info Реклама на сайте