Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт модели

    Топливно-сырьевой комплекс непосредственно зависит от типа месторождения, иа базе которого он создается, остальные же функциональные системы зависят от свойств товарных продуктов и территориальной удаленности потребителей. Поэтому жизненный цикл этих систем начинается с создания концептуальной модели ТСК. К моменту выпуска товарной продукции должны быть готовы к эксплуатации все функциональные системы система транспорта и сбыта и система обеспечения потребления. [c.240]


    В конверторе модели А катализатор перемещается снизу вверх потоком сырья, а в конверторе модели В потоком воздуха. Для транспорта катализатора из реактора в регенератор расходуется только часть того количества воздуха, которое требуется для регенерации катализатора. [c.188]

    Математическая модель автоколебаний в системах первого класса сводится к описанию динамики реакции на элементе поверхности катализатора, причем транспорт веществ обусловлен адсорбцией и десорбцией. Считая давления реагирующих веществ в газовой фазе постоянными, механиз (М) реакции окисления вещества А на элементе поверхности катализатора можно записать в следующем виде [131]  [c.317]

    Если процесс тормозится транспортом вещества не к внешней, а к внутренней поверхности контакта, например к внутренней поверхности зерен твердого пористого катализатора, то необходимо учитывать скорость тормозящей стадии — внутреннего транспорта. В этом случае модель усложняется, так как концентрации Су и температура изменяются по поверхности контакта в зависимости от радиуса зерна контактного материала Д. Скорость внутреннего транспорта можно описать законами Фика и Фурье, применив эффективный коэффициент внутренней диффузии эф и эффективный коэффициент теплопроводности Хэф. При этом для неподвижного слоя идеального вытеснения можно пользоваться моделью (11.11), изменив уравнения для расчета [c.74]

    Алгоритм управления процессом имеет следующий вид. Пусть В а, v), ГВ Ь, V) —соответственно предикаты, выражающие готовность аппаратов а н Ь к транспорту вещества, классифицируемому как некоторое взаимодействие. Рассмотрим логическую модель процесса взаимодействия двух последовательно соединенных технологических аппаратов периодического действия (см. рис. 2.21, а). Пусть по мере готовности в аппарате Л промежуточный продукт должен передаваться в аппарат А-2. Взаимодействие аппаратов Л и Лг начинается тогда, когда открывается клапан k[ иа выходе аппарата А и закрывается клапан /го иа выходе аппарата Л2- [c.140]

    Математическая модель процесса гетерофазной эмульсионной полимеризации [33]. Как было показано выше, математическая модель процесса эмульсионной полимеризации должна учитывать диффузионный транспорт молекул мономера в сплошной и дисперсной фазах. Рассмотрим типичную полимеризационную систему, состоящую из воды, практически нерастворимого в воде мономера, эмульгатора и водорастворимого инициатора. [c.153]


    Задача моделирования макрокинетики процесса фосфорилирования, протекающего в гетерофазной ФХС при изменяющихся поверхности границы раздела твердых фаз и условий транспорта исходных веществ в зону химического превращения сополимера, решается с использованием диаграммного принципа формирования математической модели ФХС. [c.338]

    Диаграмма связи процесса фосфорилирования, протекающего в гетерофазной системе жидкость — твердое , получается в результате объединения диаграмм каждой из фаз. Стыковочным элементом служит фрагмент диаграммы массопередачи через пограничную пленку жидкости, охватывающую гранулу сополимера. Особенностью топологической модели является то, что структура диаграммы изменяется по мере продвижения реакционной зоны вглубь гранулы сополимера. Скорость перемещения реакционной зоны определяется изменяющимися условиями транспорта к ней исходного вещества. [c.369]

    Так, был разработан новый аппарат с прямотоком жидкости (рис. 4.8), в котором прямоток жидкости на смежных ситчатых тарелках осуществлялся с помощью наклонного переливного устройства с клапанами, ориентированными в сторону слива. При этом горизонтальная составляющая кинетической энергии парового потока в переливном устройстве способствует росту скорости транспорта жидкости с тарелки на тарелку, значительно превышающую скорость жидкости на горизонтальных тарелках. Кроме того, в этом случае переливная тарелка играет роль отбойного устройства, что позволяет увеличить скорость пара в сечении тарелки с минимальным уносом. Были проведены исследования на системе воздух - вода в аппаратах диаметром 700, 1000 и 3000 мм. Цель исследований заключалась в определении зависимости параметров математической модели массопередачи (Ре, 4,) от гидродинамических условий на тарелке. Эти параметры использовались в дальнейшем для расчета числа ситчатых тарелок, снабженных клапанным переливным устройством. [c.201]

    Наиболее часто в исследованиях используют различные модификации модели послойного горения [145-148, 151]. При обосновании выбора такой модели обычно исходят из следующих предпосылок [75, 147]. При достаточно высокой температуре скорость горения кокса начинает тормозиться скоростью транспорта кислорода к поверхности окисления. В случае сферического зерна реакция протекает исключительно по сферической границе раздела, которая непрерывно перемещается по направлению к центру зерна. При этом суммарная скорость реакции лимитируется скоростью диффузии кислорода через освободившиеся от кокса поры зерна в зону химической реакции. В этой зоне кислород полностью расходуется, и дальнейшей диффузии к центру зерна не происходит. В работе [23] приведены многие экспериментальные данные, качественно иллюстрирующие описанный выше характер удаления кокса. Однако регенерацию закоксованных катализаторов не всегда проводят во внутридиффузионном режиме. Иногда для предотвращения возможных перегревов процесс рекомендуют начинать при низких начальных концентрациях кислорода [75, 147, 149]. В таких условиях процесс протекает практически в кинетической области, поэтому скорость удаления кокса примерно одинакова в любой точке по радиусу зерна. Понятно, что подобную закономерность выжига кокса модель послойного горения воспроизвести не может. [c.71]

    Карьерные экскаваторы, работающие на транспорт, будут укрупнены сейчас создана модель с ковшом емкостью 12,5 м . В предстоящие годы благодаря внедрению крупных экскаваторов-на угольных разрезах повысится концентрация работ, улучшатся экономические показатели. [c.137]

    Одной из основных причин низкой эффективности существующих АСУ ТП транспорта газа является разработка алгоритмов управления на основе представления ГТС как традиционного объекта управления с использованием только детерминированных или стохастических моделей процессов транспорта газа. Структуру таких АСУ ТП можно описать кортежем [c.267]

    Представляет интерес сравнительный анализ систем автоматического регулирования РРБ установок с транспортом в разбавленной фазе (модели типа иОР и Г-43-107) [41]. [c.62]

    Разработка транспорта сыпучих материалов потоком высокой концентрации привела к созданию схемы реакторного блока, изображенной на рис. 62, в. Особенностью этой схемы является транспорт катализатора в плотной фазе ари умеренных расходах транспортирующего газа, без регулирующих задвижек на катализаторо-проводах и повышенная эффективность улавливания катализатора в верхней части аппарата. Последнее позволило увеличить скорости паров и газов в аппаратах реакторного блока и тем самым сократить размеры аппаратов. Так, если сопоставлять удельную нагрузку сечения реактора, выраженную в тоннах сырьевой нагрузки в 1 ч на 1 поперечного сечения, то для установок типа модели III она составляет в среднем от 3,3 до 7,1 тЦм -ч), а для установок модели IV — от 4,8 до 9,7 т/ м -ч) (чаще от 8 до 10 т1м -ч) .  [c.190]


    Модель в основном верна и в настоящее время она основана на существующем в планировании методе линейного программирования. Гибкость и динамичность модели достигаются путем изменения информации об уровнях и соотнощении затрат на сырье (нефть, природный газ) и о потребности в нефтепродуктах. В качестве критерия оптимальности принят минимум народнохозяйственных приведенных затрат на добычу, транспорт, переработку нефти и замещение мазута природным газом при условии полного обеспечения заданной потребности в моторных топливах, сырье для нефтехимии и других продуктах, включая котельное топливо. [c.317]

    Одним из важнейших направлений развития физико-химической механики нефтяных дисперсных систем является изучение течения наполненных нефтяных систем, концентрированных растворов высокомолекулярных соединений нефти. Задача подобных исследований состоит в описании режимов течения нефтяных систем — растворов нефтяных фракций в широком интервале изменения физико-химических характеристик и концентраций их составляющих, типов растворителей и других факторов. Таким образом, на основании выявленных феноменологических закономерностей возможно будет выяснить качественные модели режима течения растворов нефтяных фракций. Прикладным значением таких моделей явится прогнозирование поведения нефтяных систем в процессах их добычи, транспорта и переработки, выявление новых направлений использования нефтяного сырья и создание на этой базе новых видов композиционных материалов. [c.86]

    Возможен перенос иона как ординарным переносчиком, так и коллективом переносчиков (схема коллективного транспорта). Другая модель — модель эстафетного переносчика — предполагает, что переносчики неподвижны и образуют цепи, расположенные поперек мембраны, а катионы пересекают мембрану вдоль этих цепей, перескакивая от одного переносчика Т к другому. Обе модели приводят к колоколообразной зависимости проводимости мембран на постоянном токе от концентрации ионов. Однако при малом содержании С+ в растворе и больших концентрациях Т" в мембране проводимость ее по переменному току высокой частоты мала для эстафетного механизма и значительна при механизме подвижных переносчиков. [c.141]

    Значение мицеллярных растворов ПАВ для биологических систем и практики определяется главным образом способностью мицелл солюбилизировать различные вещества. Кроме того, в настоящее время мицеллы рассматривают как модели биологических мембран благодаря сходству некоторых свойств структуры мембран и мицелл. Мицеллы солей желчных кислот играют важную роль в транспорте и адсорбции липидов, являются солюбилизаторами холестерина, обеспечивают вывод лекарств из организма. Примеры практического применения мицелл ПАВ многообразны. Мицеллярные системы обладают сильным моющим действием. При сухой химической чистке происходит солюбилизация обратными мицеллами полярных загрязнений с тканей прямыми мицеллами солюбилизируются жирные углеводородные загрязнения, на чем основано моющее действие ПАВ. [c.445]

    На рис. 189 представлена более современная модель транспорта электронов при фотосинтезе. [c.346]

    Модель транспорта электронов при фотосинтезе [c.346]

    При pH > 9 в осадок уходит большинство металлов, оставляя д< минирующим катионом Ыа и до некоторой степени Mg, раствор) мость которого контролируется образованием магнезита и долом тов. Отсутствие Са и Ре в растворе приводит к тому, что удаляют( основные катионы, связывающие фосфат в нерастворимые минер лы, и в щелочной среде он перестает быть лимитирующим элеме том, если достигает водоема. В роли лимитирующего элемента мс бы выступать азот, но для цианобактерий и анаэробов его отсутс вие не служит препятствием, поскольку эти организмы обладак способностью к азотфиксации. В мелких водоемах с постоянным п( ступлением эолового материала в виде пыли вряд ли могут бьп лимитирующими другие элементы, хотя в сообществе для обеспеч ния их доступности должны быть развиты способы комплексообр зования и транспорта. Моделью для изучения химии и биологии с< довых водоемов служат Великие Африканские озера и экстремал но минерализованные водоемы Восточно-Африканского рифт прежде всего экваториальное озеро Магади, находящееся в услов) ях недавней вулканической деятельности, цепь водоемов Вади-эл1 Натрун к западу от Александрии и озера Центральной Азии (Зава] ЗИН, 1993 Заварзин и др., 1999). Переходную форму составляют та называемые степные озера с обильным развитием высшей раст) тельности по берегам. [c.88]

    Рассматриваемое отношение обычно значительно больше единицы, что можно объяснить следующим образом. Поперечный перенос количества движения (бомбардировка стенки твердыми частицами) настолько интенсивен, что Нристеночная пограничная пленка в псевдоожиженном слое гораздо тоньше теоретически рассчитанной. Многими авторами было показано, что в предельном случае, когда число твердых частиц у стенки невелико, значение KQw становится равным К ва,. Это, однако, возможно в условиях, близких к пневматическому (или гидравлическому) транспорту (е 1 1 — е (ИАЬ) . Следовательно, модель расширенного слоя, не учитывающая движения частиц, может найти очень ограниченное применение в расчетах скорости переноса к стенкам или к каким-либо телам в псевдоожиженном слое. [c.384]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    Во-вторых, из-за перемещения реакционной зоны вглубь гранулы сополимера и изменения поверхности раздела фаз сополимера и ионита изменяются условия транспорта кислоты в зону реакции. Следовательно, для данного процесса сульфирования математическое описание его из-за нестацнонарности внешнедиффузионной области будет деформироваться во времени, и гипотеза квазистационарности, положенная в основу описания подавляющего большинства гетерофазных систем жидкость—твердое (в том числе и для процесса сульфирования сополимеров, набухших в дихлорэтане), для процесса сульфирования сополимеров, набухших в тионилхлориде, выполняться не будет. В этой связи возникает проблема разработки математической модели, учитывающей существенную нестационарность процессов сульфирования сополимеров, определения параметров этой модели и проверки ее адекватности, использования синтезированной модели для оптимальной организации процесса сульфирования. [c.352]

    Специфика физикохимии процесса сульфирования и условия его проведения обусловливают решение задачи моделирования процесса при следующих допущениях 1) каждая гранула сополимера в условиях интенсивного перемешивания окружена сферическим слоем жидкой сферы (сферическая ячеечная модель) 2) жидкая среда идеально перемешана 3) гранула сополимера является изотропным телом, свойство массопроводимости которого не меняется по сечению в ходе образования продукта реакции 4) выполняются условия равнодоступности поверхности 5) концентрация реагентов в зоне максимальной скорости химического превращения сополимера в ионит определяется диффузионным транспортом исходного вещества. [c.352]

    Проведены реконструкция технологической нитки УКПГ-2 и комплекс ные исследования, построены модели процесса осушки газа и дан прогноз ха рактеристик работы и показателей качества газа при различных компоновка основного оборудования подготовки газа к транспорту на весь период эксплуа тации. [c.217]

    Системы ситуационного управления — это интеллектуальные автоматизированные системы, вырабатывающие в режиме диалога с ЛПР управляющие решения на основе накопления и переработки знаний о структуре, свойствах и характеристиках функционирования сложных объектов, для которых в настоящее время частично или полностью не существует полных математических моделей. Эти системы используются для управления сложными промышленными комплексами (отдельными предприятиями, отраслями народного хозяйства, территориально-промышленными комплексами и регионами) в условиях неполной информации, сложными техническими системами (газотранспортными, энергоснабжения, трубопроводными системами магистрального транспорта химических продуктов и др.), для планирования работы в сложных ситуациях (составление графиков работы или циклог- [c.25]

    Г. Схемы с однократным подъемом катализатора и сооспым расположением аппаратов транспорт катализатора в разбавленпой фазе. Такие схемы решаются в двух вариантах 1) реактор расположен над регенератором (рис. 22. 25), так называемая модель Ор-тофлоу А 2) регенератор расположен пад реактором (рис. 22. 26) — модель Ортофлоу Б . [c.635]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Иначе стоит задача составления перспективного плана раз.в - тия и размещения отрасли. В этой задаче необходимо не только определить объемы производства продукции по предприятиям во времени, но и рассчитать, как должна изменяться мощность лредпри ятий,. какими должны быть глубина переработки нефти по предприятиям, межрайонные поставки нефтепродуктов, рациональное смешение нефтей, виды транспорта и др. Учитывая необходимость Сокращения размера модели, расчеты проводятся по агрегированным группам продуктов выделяются светлые нефтепродукты, котельное топливо, ароматические углеводороды, газовые /ресурсы для нефтехимии, битумы. [c.162]

    Поэтому для выбора рациональных технологий или энергосберегающих режимов при перекачке реологически сложных жидкостей целесообразно уметь достаточно точно прогнозировать различные аспекты работы данных трубопроводов. Известные детерминированные методы расчета стационарной и нестационарной работы трубопроводов, перекачивающих неньютоновские жидкости, основанные на применении средних по сечению трубы значений рабочей температуры и скорости перекачиваемой жидкости, часто приводят к значительным ошибкам в прогнозе технологических параметров при различных режимах работы участков трубопровода. Новые знания, получе1шые при теоретических и экспериментальных исследованиях процессов гидродинамики и теплообмена при течении аномальных жидкостей по трубам и каналам, позволяют построить достаточно точную математическую модель стационарных и нестационарных режимов работы трубопроводов различных способов прокладки (различные условия теплообмена с окружающей средой) при транспорте реологически сложных жидкостей. Поэтапное построение модели различных аспектов работы трубопровода, т. е. рассмотрение математической модели каждого стационарного и нестационарного гидродинамического режима в отдельности, в свою очередь, позволило выявить ряд таких новых эффектов в динамике течения аномальных жидкостей, как возникновение застойных зон в гидравлически гладкой трубе, режимы гидродинамического теплового взрыва и т. п. [1—4]. Это, в свою очередь, позволило не только понять и объяснить своеобразные режимы работы некоторых действующих нефтепрово- [c.151]

    Совместно с Л.С.Гордеевым и А.Ю.Винаровым сформулированы научные принципы анализа, оптимизации, масштабирования и проектирования биотехнологических процессов. С позиций системного подхода последовательно проведен анализ эффектов и явлений, происходящих в биохимическом реакторе на микро- и макроуровне. Разработаны математические модели, учитывающие кинетику роста микробных популяций, транспорт питательного субстрата к клеткам и гидродинамическую обстановку в реакторе, характеризуемую эффектами се1регации ферментациогшой среды и неидеальностью структуры потоков в реакторе большого объема. Предложена методика решения задачи масштабного перехода от лабораторных установок к промышленным биореакторам на основе вычислительных экспериментов. Показаны направления оптимизащш конструктивных и режимных параметров биотехнологических процессов. [c.13]

    Полупроницаемые мембраны и, следовательно, мембранные явления чрезвычайно распространены в живой природе. Так, клеточные или плазменные мембраны отделяют внутреннюю часть любой живой клетки от окружающей среды. Составы растворов внутри и снаружи клеток различны, а сами мембраны обладают избирательной проницаемостью. В основе транспорта веществ через мембраны лежат электрохимические закономерности. Этот пример указывает на важность электрохимического подхода к исследованию биологических объектов. Изучение электрохимических закономерностей функционирования живых систем и их моделей составляет предмет биоэлектрохимии. Это направление электрохимии интенсивно развивается в настоящее время. Один из разделов биоэлектрохимии связан с изучением мембран и их роли в биологических системах. [c.138]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]


Смотреть страницы где упоминается термин Транспорт модели: [c.355]    [c.39]    [c.299]    [c.69]    [c.362]    [c.99]    [c.190]    [c.369]    [c.121]    [c.346]    [c.39]    [c.61]   
Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте