Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инструментальные методы анализа эмиссионная

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    К собственно химическим методам исследования относятся синтез минералов и являющихся продуктами процесса соединений, изучение их состава и поведения в разных условиях при взаимодействии с теми или иными реагентами, а также фазовый химический анализ изучаемых продуктов. Обычно химические методы не используются изолированно, а сочетаются с физико-химическими и все чаще—физическими методами. Даже простая операция количественного определения pH или Ен раствора основана на применении потенциометрии — физико-химического метода. Да и определение качественного и количественного состава вещества проводят не только химико-аналитическими методами, а с широким использованием физических и физико-химических методов анализа (эмиссионного и атомно-абсорбционного спектрального, рентгеноспектрального, активационного и др.). Для обеспечения правильности результатов анализа применяют стандартные образцы веществ и материалов, состав которых установлен на основе комплексного использования химических и различных инструментальных методов. [c.199]

    Выход в свет второго, дополненного и переработанного издания Практикума по агрохимии связано с необходимостью методологического обеспечения агрохимических исследований по более широкому набору показателей, а также со знакомством с новыми инструментальными методами анализа, нашедшими повсеместное применение в практике агрохимических исследований. Интерес представляют спектроскопические методы анализа, особенно атомно-абсорбционная спектрофото-метрия и спектроскопия в ближней ИК-области. В научно-исследовательских учреждениях и высших учебных заведениях широко применяются поляриметрические, ионометрические, рентгенофлуоресцентные, атомно-эмиссионные, нейтронно-активационные, хроматографические методы анализа почвы, растений и удобрений. [c.3]

    В Советском Союзе имеются большие достижения в области теоретических основ аналитической химии — теории ионных равновесий, комплексообразования, окислительно-восстановительных процессов, теории действия органических аналитических реагентов, экстракции, соосаждения, неводного титрования. Внесен заметный вклад в анализ органических веществ, например полимеров, элементоорганических соединений. Успешно развивается теория и практика инструментальных методов анализа эмиссионного спектрального анализа, атомно-абсорбционного, люминесцентного, фо-т о>1е.трического, радиоактивационного. [c.9]


    За интенсивным внедрением спектрофотометрических методов в анализ силикатных пород последовало внедрение и других инструментальных методов. Эмиссионная спектрография, известная также как оптическая и ранее широко применявшаяся для качественного анализа минералов, стала ценным добавочным средством во многих лабораториях, занятых анализом пород. В некоторых нз них перед химическим анализом практикуют количественную проверку всех силикатных пород спектральным методом. Такой прием служит для идентификации интересующих элементов, которые затем определяют другими методами. Это дает также аналитику представление о порядке величин, с которыми он может встретиться в ходе анализа. Эмиссионная спектрография удовлетворила мечту геолога о большом количестве быстрых, дешевых анализов — по крайней мере для второстепенных и следовых компонентов силикатов. Попытки использовать спектральные данные для получения полных анализов широкого распространения не получили [3]. [c.10]

    Таким же образом ведут анализ, если неизвестное вещество поступает на анализ в виде раствора. При анализе неизвестного вещества, как правило, не ограничиваются приемами качественного химического анализа, а используют эмиссионный спектральный анализ, хроматографический анализ и некоторые другие инструментальные методы анализа (часть пятая). [c.93]

    Использованный метод фракционирования практически исключал вероятность разложения образцов в процессе разделения. Выделенные фракции изучали с использованием инструментальных методов анализа масс-спектрометрии, ИК- и УФ-спектроскопии, эмиссионной и ЭПР-спектроскопии и рентгеноструктурного анализа. Для отдельных фракций были получены данные [c.161]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    В последние годы все более широко для анализа металлов в природных объектах и почвах применяют прямые атомно-абсорбционные методы с лазерным атомизатором, комплекс ядерно-физических методов, в том числе ядерно-магнитно-релаксационный анализ, лазер-но-люминесцентные методы определения микроколичеств металлов, эмиссионный анализ с индуктивно связанной плазмой, ионообменную хроматографию. Наряду с инструментальными широко используются традиционные химические методы анализа. [c.250]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    Для быстрого обнаружения мышьяка сухим путем могут быть использованы также некоторые инструментальные методы, в том числе методы эмиссионного спектрального анализа по линиям Ав 2288,1 2349,8 2780,2 2860,5 и 3266,0 А. [c.23]


    Прямые способы определения элементов не предусматривают какой-либо химической обработки проб и поэтому существенно сокращают время анализа, а если учесть, что при этом, как правило, используются рентгеновский или спектральный эмиссионный методы, то в ряде случаев они могут быть и экспрессными. Ниже рассматриваются примеры практического применения инструментальных методов для определения рзэ в различных образцах. [c.216]

    В состав органических веществ могут входить почти все элементы периодической системы. Однако в настоящей книге будут описаны методы определения лишь нескольких элементов, наиболее часто встречающихся в составе органических веществ. Детектирование всех других элементов представляет собой задачу, с которой сталкиваются, например, в курсе инструментального анализа, включающего атомно-адсорбционный, эмиссионный, пламенно-фотометрический и другие инструментальные аналитические методы. [c.101]

    При определении элементов-примесей аналитики могут пойти несколькими путями. Многие предпочитают прямые высокочувствительные инструментальные методы, позволяющие сразу определять много элементов ( узел на рисунке). Это, например, эмиссионный спектральный анализ, искровая масс-снектрометрия, ин- [c.105]

    В наше время эмиссионный и атомно-абсорбционный спектральные анализы относятся к числу основных инструментальных методов, получивших широкое распространение. Методы продолжают развиваться и оказывать влияние на развитие аналитической химии и других наук. [c.10]

    Определение компонентного состава руд методом эмиссионного спектрального анализа. Андреева Т. Б., Туркин Ю. И. В кн. Инструментальные и химические методы анализа. Изд-во Ленингр. ун-та, 1973, с. 12—17. [c.146]

    Последние два-тря десятилетия требования к нижним границам определяемых содержаний элементов в объектах различной природы и назначения постоянно ужесточались. Для решения данной проблемы химики-аналитики мобилизовали разные силы и средства, привлекали идеи и методы других наук. Результатом этого труда явилось внедрение в аналитические лаборатории исследовательского и прикладного профиля таких высокочувствительных методов, как радиоактивационный анализ, различные варианты масс-спектрометрии, атомно-абсорбционной, атомно-флуоресцентной и рентгенофлуоресцентной спектрометрии, наконец, атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой и др. Казалось бы, прямым инструментальным методам все по плечу. Но опыт свидетельствовал велики матричные эффекты и эффекты взаимного влияния элементов вообще, нередко проба без соответствующей обработки просто непригодна для анализа, невозможно найти стандартные образцы состава на все случаи жизни, а новые приборы не всегда и не всем доступны. И здесь исследователи привлекли методы концентрирования микроэлементов, которые позволили в значительной мере ликвидировать сложные ситуации. Более того, в ряде случаев концентрирование расширило пределы применимости инструментальных методов, не обделив при этом и другие мегоды определения. [c.10]

    Барсуков В.И. Пламенно-эмиссионные и атомно-абсорбционные методы анализа и инструментальные способы повышения их чувствительности. М. Изд-во Машиностроение-1 , 2004. 172 с. [c.82]

    Если задача определения брома ставится в плане многоэлементного анализа, ее стараются решить без разрушения анализируемой пробы, применяя эмиссионный спектральный, рентгенофлуоресцентный или инструментальный активационный методы. В других случаях проводят ту или иную подготовку образца к анализу, нередко подвергая его химическому разрушению, а после этого — отделяют бром от элементов, мешающих его определению. Разделению смесей может сопутствовать концентрирование определяемого элемента. При определении микроколичеств и в радиохимическом анализе концентрирование выступает в качестве задачи самостоятельного значения, но решается она теми же методами осаждения, экстракции, ионного обмена и отгонки, которые применяют для аналитического разделения. Выбор конкретного хода анализа и метода определения брома, естественно, зависит от характера поставленной аналитической задачи и состава объекта исследования. [c.162]

    Широкое применение инструментальных методов анализа ни в какой мере не умаляет роли классической аналитической химии, которая, безусловно, является основой современной аналитической химии. Поэтому на первом этапе студенты знакомятся с классическими методами анализа и лишь с основами электрохимических, спектроскопических, хроматографических и некоторых других современных методов анализа (книги 1 и 2 Основы аналитической химии ). На втором этапе студенты углубленно изучают и практически осваивают в лаборатории аналитической. химии потенциометрический, кондуктометрический, хро-нокондуктометрический, высокочастотный, полярографический, амперометрический, кулонометрический, эмиссионный и абсорбционные методы спектрального анализа в видимой, ультрафиолетовой и инфракрасной областях спектра, а также радиометрические, хроматографические и другие методы анализа, и в том числе методы титрования иеводных растворов и методы анализа редких элементов, которые изложены в этой книге. [c.18]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Значительно расширена программа производственного обучения физико-химическим (инструментальным) методам анализа. В пособии рассмотрены методические вохфосы производственного обучения лаборантов современным физико-химическим методам анализа спектрофотометрическому, нефелометрическому, эмиссионному, спектральному, рефрактометрт-ческому, электровесовому, потенциометрическому, полярографическому, хроматографическому и некоторым другим. [c.3]

    При использовании прямых вариантов таких инструментальных методов, как эмиссионная спектрография, искровая и лазерная масс-спек-треметрия, рентгенофлуоресцентный анализ в тонком слое, аналитический сигнал обычно получают от небольшой массы материала (0,01-0,1 г). Только сочетание указанных методов с предварительным концентрированием примесей из достаточно больших навесок позволяет надежно устанавливать средние относительные содержания микрокомпонентов в веществе, если они распределены в нем неравномерно. [c.23]

    Для установления значимых различий между исследуемыми пробами были использованы следующие современные инструментальные методы анализа а) инфракрасная спектроскопия (ИКС) б) капиллярная газо-жидкостная хроматография (ГЖХ) в) хромато-масс-спектрометрия (ХМС) г) гамма-спектрометрия д) ин-дуктивно-связанная плазма с масс-спектрометрической регистрацией (ИСП-МС) е) атомно-абсорбционный спектральный (ААС) анализ в варианте пламенной и непламенной атомизации ж) рентгенофлюоресцентный анализ (РФА) з) атомноэмиссионный спектральный (АЭС) анализ и) атомно-эмиссионный спектральный анализ с индуктивно-связанной плазмой (ИСП-АЭС). [c.297]

    Определение содержания стронция в апатитовом концентрате эмиссионным пламенно-фотометрическим методом. Эпштейн Т. Б., Бессонов В. А. Инструментальные методы анализа и исследования в производствах серной кис.чоты, минеральных удобрений и кормовых фосфатов. Труды НИУИФа, вып. 240. М., НИУИФ, 1982, стр. 34—38. [c.189]

    Некоторые образцы, например металлы и вещества высокой чистоты, редкие природные и искусственные соединения очень дороги или имеются в небольших количествах. Современные инструментальные методы анализа позволяют непосредственно определять микроэлементы на уровне 10 -10 г/г в пробах массой несколько миллиграммов. Применение для концентрирования техники микроанализа позволяет эффективно использовать атомно-эмиссионные, атомно-абсорбционные и атомно-флуоресцентные с электротермической атомизацией методы, искровую масс-спектрометрию, проточпо-инжекционный анализ, электронный и ионный микрозонд, для которых максимальный объем пробы находится на уровне микролитров. Кроме того, при этом уменьшается расход проб, реагентов высокой чистоты, сокращается продолжительность анализа. Для получения правильных и воспроизводимых результатов с помощью техники микроанализа необходима высокая квалификация аналитика. [c.20]

    Большой прогресс в изучешш микроэлементов в пищевых продуктах связан с успехами инструментальных методов анализа, в том числе эмиссионной спектроскопии, атомной абсорбщ1и, полярографии. Сначала большие надежды возлагались на методы эмиссионной спектроскопии, позволявшей из одной пробы проводить анализ большого числа элементов. Однако вскоре выяснилось, что на количественное определение сильно влияют присзггствие многих элементов в пробе ( матричный эффект ). Дня устранения влияния матричного эффекта рекомендуется готовить эталоны ( основы ) очень сложного состава, который сильно варьирует в зависимости от вида продукта [5]. При этом проверку правильности приготовления эталонов рекомендуется проводить другими независимыми методами (химическими, атомноабсорбционными и др.). Это сильно усложнило анализ, а без учета матричного эффекта метод эмиссионной спектроскопии для многих элементов вызовет ряд серьезных погрешностей [5]. Впрочем, во многих случаях и подобная фактически полуколичественная оценка представляет для гигиенистов определенный интерес и поэтому спектральные данные наряду с другими были использованы в настоящем справочнике (например, данные по бору, хрому, молибдену, алюминию). [c.341]

    Это означает, что принцип релятивизации, или разностного измерения, позволяет исключить в криоскопии как систематическую погрешность градуировки, так и систематическую реактивную (примесную) ошибку. Принцип вычитания аналитического сигнала холостой пробы или фона используется во всех инструментальных методах. Такая коррекция фона исключительно важна при прямом анализе млогокомпонентных смесей (без предварительнога разделения), особенно при работе вблизи предела обнаружения, где сигналы фона и определяемого компонента соизмеримы. Коррекцию фона проводят либо непосредственно в ходе измерения сигнала анализируемого компонента, регистрируя интенсивность фонового сигнала рядом с основным, как это делается, например, в эмиссионном спектральном анализе. Так, при фотографической регистрации измеряют разность почернений  [c.40]

    За последние несколько лет система преподавания химии в американских колледжах и университетах подвергалась коренной перестройке. Специалисты пришли к выводу о необходимости принципиальных изменений. Предметы были разделены на две отдельные группы — вертикальные , например неорганическая и органическая химия, и горизонтальные , например химическая динамика. Пятнадцать лет назад основной курс химического анализа повсеместно изучался на 3-ем и 4-ом семестрах. Этот курс был профилирующей дисциплиной студентов-химиков (углубленное представление о предмете можно было получить на следующих семестрах), а также одной из профилирующих дисциплин для студентов других специальностей, например биологов (которые ее терпеть не могли ). К 1970 г. этот вводный курс был, по существу, исключен из программ 3-го и 4-го семестров. Требования, предъявляемые современной системой образования, заставили ввести новый предмет на мервом семестре — вводный курс по аналитической химии. Такое резкое изменение учебной программы потребовало новых учебников, а их не было. Современная аналитическая химия профессора Пиккеринга является удачной попыткой заполнить этот пробел. Книга представляет собой сжатый лекционный курс, рассчитанный на студентов двухгодичных и четырехгодичных колледжей и университетов. Однако предмет изложен на достаточно высоком уровне с очевидным акцентом на основные принципы методов. Это хорошо защищает студентов от опасной тенденции воспринимать химию как сборник рецептов . Пиккеринг, в ногу со временем, концентрирует внимание на аналитических методах, основанных на взаимодействии между материей и энергией (инструментальный анализ). Среди аналитических методов, основанных на взаимодействии между материей и материей (химический анализ), наибольшим вниманием автора пользуются методы, которые сохраняют свое значение (например, титриметрия). В целом Пиккеринг написал замечательную и небольшую по объему книгу, в которой ему удалось (причем не поверхностно) охватить разнообразные методы термические методы радиохимический анализ эмиссионные методы и методы, основанные на атомной и молекулярной абсорбции спектроскопию комбинационного рассеяния микроволновую спектроскопию ЯМР- и ЭПР-спект-роскопию масс-спектрометрию измерение дисперсии оптической актив- [c.14]

    Общее представление о степени использования различных методов анализа для установления концентрации металлов в нефти и нефтепродуктах за 1967—1981 гг. можно получить из рассмотрения периодически публикуемых в журнале Analyti al hemistry обзоров [15—22] и работ советских авторов по использованию ядерно-физических методов анализа [8—12,23—27]. На рис. 1.1 приведены данные из [15—22] о числе публикаций по применению 1 — нейтронно-активационного анализа (НАА) 2 — атомно-абсорбционной и атомно-флуоресцентной спектрометрии (ААС, АФС) (в основном ААС) 3 — атомно-эмиссионной спектрометрии (АЭС) 4 — рентгено-флуоресцентного анализа (РФА) 5 — других химических и физико-химических методов (колориметрических, спектрофотометрических, электрохимических), выраженные в процентах к общему числу публикаций по определению металлов в нефти и нефтепродуктах. Видно, что с 1967 г. происходит рост числа работ, посвященных анализу нефти и нефтепродуктов инструментальными атомно-спектрометри- [c.20]

    Из инструментальных методов определения микроэлементов в природных и сточных водах наиболее экспрессным и универсальным является атомно-эмиссионный спектральный метод. Поскольку содержание большинства микроэлементов в пресных водах весьма мало (10 —10" мг/л), то атомно-эмиссионному спектральному определению микроэлементов, как правило, предшествует предварительное концентрирование. Атомно-эмиссионный спектральный метод в сочетании с предварительным концентрированием микропримесей может успешно применяться для анализа природных вод. Преимуществом этого метода является возможность одновременного определения большого числа элементов (до 35) с достаточной чувствительностью и точностью. [c.44]

    В связи с этим во многих лабораториях мира широким фронтом начали вести исследования по разработке высокочувствительных методов количественного определения следов элементов. Прежде всего получили развитие эмиссионный спектральный анализ, а также спектрофотометрический и полярографический методы. После того как химикам-апалитикам стали доступны атомные реакторы и ускорители частиц, все больше и больше стали использовать радиоактивациоппые методы анализа, а в последние годы масс-спек-тральный анализ. Таким образом, наблюдается непрерывное развитие инструментальных физических методов анализа следов. [c.5]

    Инструментальные методы внесли огромный вклад в дело повышения быстроты, точности и чувствительности в аналитической работе. На смену недавно господствующим электрическим методам пришли оптические методы, представленные огромным числом разнообразных приемов анализа, путем эмиссионной спектроскопии, анализа с помощью различных спектров поглощения и т.д. За ними пришли электронные методы—масс-спек-троскопический, ядерный и электронный магнитный резонанс и другие, а также радиоактивационные методы анализа, уже сегодня зарекомендовавшие себя в области определения примесей при их содержании 10 и менее. Эти методы больше отвечают требованиям автоматизации контроля, задаче не столько научного, сколько больше социального значения, призывающей химиков-аналитиков заводов и фабрик активно принять участие в улучшении жизни. [c.9]

    Современные инструментальные методы аналитической химии, такие как нейтронно-активационный, рентгеноспектральный, атомноадсорбционный, атрмно-эмиссионный анализы, спектрофотометрический и флуориметрический методы, инфракрасная спектрометрия, а также электрохимические и хроматографические методы, позволяют достигать достаточно низких пределов обнаружения, обеспечивают высокую чувствительность и избирательность определений. При определении высокотоксичных загрязнителей необходимая чувствительность определений достигается в результате применения различных детекторов (пламенно-ионизационного, электронного захвата, атомно-эмиссионного). Определение пестицидов, диоксинов, нитрозоаминов и других токсикантов обычно проводится сочетанием хроматографии с масс-спекТрометрией (масс-спектрометр, подключенный к хроматографу, выступает в роли детектора). Как правило, приборы такого типа бывают оснащены мощным компьютером. [c.28]

    Как правило, хроматофафический анализ ртутьорганических соединений в природных водах включает стадию предварительного сорбционного, экстракционного, дистилляционного или гидридного криогенного концентрирования [175, 390, 435, 623]. Затем элюаты или экстракты подвергаются хроматофафическому разделению с детектированием фракций различными инструментальными методами. Разработаны следующие варианты хроматографических методов ГХ с детектором по захвату электронов [256, 283, 287, 432, 434, 553, 603], АА [287, 528, 603], АФ [390, 435, 631] или плазменно-эмиссионным [291, 299] детектированием ЖХ со спектрофотометрическим, АФ, ААили плазменно-эмиссионным детектированием [287, 345, 398, 419, 424, 526, 631] ТСХ с денситометрическим [277], радиоанали-тическим [27] или АА [420, 456] детектированием ионная хроматография цистеиновых комплексов с АА детектированием паров восстановленной ртуги [562] и др. [c.117]

    При выборе методов анализа вод различного состава необходимо принимать во внимание приведенные выше данные об элементном составе природных, питьевых и сточных вод, а также возможности инструментальных аналитических методов (способ введения пробы, пределы обнаружения, погрешность определения). Сравнительная характеристика наиболее часто применяемых современных методов определения элементного состава по их пределам обпаружения представлена на рис. 1.3. Видно, что для определения макроэлементов (Са, Mg, К, Ыа, С1, Ее) с успехом могут быть применены прямая атомно-абсорбционная спектрометрия в пламенном варианте (ПААС), атомно-эмиссионная спектроскопия (АЭС) с различными источниками возбуждения спектров, электрохимический метод (ионо-селективные электроды, кондуктометрия). При определении микроэлементов для большинства методов возможности прямого инструментального анализа на уровне 1 мкг/л ограничены недостаточной чувствительностью. Прямое определение микроэлементов в природных водах возможно при использовании массснектрометрии с индуктивно связанной плазмой (ИСП-МС) [c.10]

    За последние три десятилетия характер элементной аналитической химии существенно изменился благодаря развитию инструментального анализа. Многие методы возникли и получили широкое распространение для рутинного анализа на коммерчески доступных приборах. Примерами могут служить атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой, масс-спектрометрия с индуктивно-связанной плазмой и атомно-абсорбционная спектрометрия с графитовыми печами. Некоторые другие методы, такие, как резонасно-ионизационная масс-спектрометрия, находятся пока в стадии изучения, но их аналитические возможности столь многообещающи, что внедрение этих методов—дело ближайшего будущего. [c.6]

    В сйорнике цредставлены материалы научно-исследовательскшс работ, выполненных в институте в последние годы в области подготовки сщ)ья коксования, технологии производства и црименения нефтяного кокса. В статьях рассмотрены важные вопросы разработки схем получения коксов различного назначения, изучения термолиза дистиллятных и остаточных цродуктов, методов и программ расчета твхяшческих цроцессов, исследования физико-механических свойств коксов, анализа работы некоторого оборудования установок замедленного коксования. Приведены результаты исследований разных видов сырья коксования во взаимосвязи с качеством получаемого кокса. Работы выполнены с использованием современной инструментальной техники эмиссионной и ИК-спектроскопии, радиоспектроскопии, рентгеноструктурного анализа и т.д. [c.2]

    С неоднородным магнитным полем. Бейли [21] описал многоканальный анализатор ионов с пересекающимся электрическим и магнитным полем. Беккей и Шутте [35] обсудили инструментальные проблемы при использовании в масс-спектрометрах ионизации на острие. Масс-спектроскопия обеспечивает необходимую точность и является хорошим дополнением к эмиссионной спектроскопии при исследованиях в области металлургии [58]. При анализе сложных углеводородных систем также использовалась комбинация различных методов [103]. [c.654]


Смотреть страницы где упоминается термин Инструментальные методы анализа эмиссионная: [c.42]    [c.471]    [c.51]    [c.105]   
Химия окружающей среды (1982) -- [ c.586 , c.631 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ инструментальный

Анализ эмиссионный

Методы анализа инструментальны

ЭМИССИОННЫЕ МЕТОДЫ АНАЛИЗА

гом эмиссионный



© 2024 chem21.info Реклама на сайте