Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поперечная и продольная диффузия

    В газовой фазе поперечная турбулентная диффузия оказалась значительно меньше, чем продольная, особенно при низких скоростях газа [203]. [c.198]

    Поперечная и продольная диффузия [c.59]

    В общем случае поперечная диффузия уменьшает колебания концентрации по поперечному сечению и, следовательно, приближает параметры реактора вытеснения к параметрам, которые имели бы место в реакторе идеального вытеснения. Влияние продольной диффузии противоположно, поскольку концентрация реагента уменьшается от входа в реактор к его выходу. Направление продольного градиента концентрации таково, что, благодаря диффузии, реагент перемещается к выходу из реактора несколько быстрее, чем это имело бы место, если бы он перемещался с основным потоком. [c.59]


    В случае турбулентного течения в трубе соответствующие отношения между эффективными продольным и поперечным коэффициентами диффузии не превышают обычно 10 . Однако времена, через которые наступает такое отношение, определяются выражением  [c.111]

    Другим примером, иллюстрирующим различие времен пребывания, может служить рассмотрение профиля скоростей при движении жидкости по трубе (см. рис. II-10, стр. 45). Различия в скоростях по сечению наиболее велики при ламинарном течении. Поэтому частицы, движущиеся вблизи оси трубы, обгоняют частицы, движущиеся ближе к ее стенкам, и находятся в трубе значительно меньшее время, чем последние. При турбулентном течении скорости распределены по сечению трубы более равномерно. Однако и в данном случае время пребывания разных частиц жидкости неодинаково, что обусловлено турбулентными пульсациями, под действием которых происходит перемешивание частиц, или турбулентная диффузия различные частицы движутся в разных направлениях по отношению к движению основной массы потока, в том числе и в поперечном (радиальная диффузия), и в продольном (осевая диффузия). Осевая диффузия может как совпадать по направлению с движением основной массы потока, так и быть направлена в обратную сторону, в результате чего возникают различия во времени пребывания частиц жидкости. Радиальная же диффузия, выравнивая профиль скоростей, наоборот, сближает время пребывания разных частиц. [c.117]

    До составления математического описания колонн синтеза аммиака необходимо исследовать протекание процесса в слое - роль продольной и поперечной диффузии и теплопроводности, гидравлическое сопротивление, В промышленных процессах продольной диффузией и теплопроводностью можно пренебрегать, если величины Ре= >2оо 10. Величина коэффициента диффузии определяется откуда Ре В колоннах высота слоя катализатора Ijk составляет 5-8 м, а размер зерна i j = 8-10 мм. И критерий Пекле для процесса много больше предельного значения. [c.84]

    Процесс в тонком слое следует рассматривать как двумерный, при котором диффузионная массопередача в поперечном направлении соизмерима с продольной диффузией. [c.120]

    Взаимодействие неоднородного профиля скоростей по сечению реактора и поперечной диффузии также приводит к эффективной продольной дисперсии потока. Это было впервые показано Тейлором, который предложил простой п изящный экспериментальный метод измерения продольного эффективного коэффициента диффузии. Рассмотрим, например, светочувствительную жидкость, текущую в ламинарном режиме через цилиндрическую трубу. Вспышка света, проходящего через узкую щель, может окрасить в синий цвет диск Ж1ЩК0СТИ, перпендикулярный к направлению потока. Если бы диффузии пе было, то этот диск превратился бы в параболоид, причем его край, соприкасающийся со стенкой трубы, не двигался бы вообще, а центр перемещался бы со скоростью, вдвое большей средней скорости потока. Однако при этом области с низкой концентрацией трассирующего вещества окажутся в непосредственной близости к поверхности, где эта концентрация высока, и благодаря диффузии эта поверхность начнет размываться. Трассирующее вещество в центре трубы будет двигаться к периферии — в область, где течение медленнее, а трассирующее вещество у стенок — внутрь трубы, где течение быстрее. В результате концентрация по сечению трубы станет более однородной и получится колоколообразное распределение средней по сечению концентрации трассирующего вещества, центр которого будет перемещаться со средней скоростью потока. Дисперсия относительно центра распределения, служащая мерой продольного перемешивания потока, будет нри этом обратно пронорциональна коэффициенту поперечной диффузии, так как чем быстрее протекает поперечная диффузия, тем меньше влияние неоднородности профиля скоростей по сечению трубы на продольную дисперсию потока. Тейлор пашел, что эффективный коэффипиеит продольной диффузии для ламинарного потока в трубе радиусом а равен 149,0. Более детальное исследование показывает, что эффективный коэффициент продольной диффузии имеет вид  [c.291]


    Рассмотрим бесконечно малое сечение толщиной трубчатого реактора, имеющего постоянную площадь поперечного сечения (рис. 21). Согласно модели идеального вытеснения, газ течет через выбранный элемент с постоянной объемной скоростью и (соответствующей линейной скорости 7, = /Мс). Если диаметр частиц катализатора ничтожно мал по сравнению с радиусом (примерно в 15 раз) и длиной (примерно в 100 раз) реактора, то отсутствуют поперечная и продольная диффузия и наблюдается поршневой режим течения газового потока в реакторе (его отличает плоский профиль скоростей, когда не зависит от радиуса реактора) [6, с. 390]. [c.109]

    В процессе разделения с помощью капиллярного электрофореза введенная проба вследствие продольной диффузии образует расширенную зону (расширение пропорционально квадратному корню из времени). Уменьшение линейных размеров в 10 раз при фиксированном напряжении привело бы к уменьшению объема в 1000 раз поперечного сечения в 100 раз уменьшению длины капилляра в 10 раз и увеличению скорости линейного течения в 100 раз. Как изменится максимальная интенсивность сигнала для введенного компонента Какая из следующих трех детекторных схем представляется наиболее предпочтительной для этого случая  [c.649]

    В теории рассматривается модель разделяющего процесса, протекающего в колонке длиной Ь поперечного сечения Е, которая гомогенно заполнена шарообразными зернами адсорбента со средним радиусом Я, причем радиус зерен мал по сравнению с радиусом колонки. Внутренняя пористость адсорбента равна е внешняя пористость адсорбционного слоя составляет 8 , а свободный объем колонки, не заполненный зернами, равен ЪеЕ. Газ-носитель проходит через свободное пространство с объемной скоростью ю, так что линейная скорость и = ю/ВеЕ. Молекулы адсорбата уносятся газом-носителем в направлении его тока с определенной линейной скоростью и одновременно протекают следующие транспортные явления 1) продольная диффузия адсорбата в среде носителя 2) вихревая диффузия 3) перенос молекул адсорбата через неподвижный слой на внешней поверхности зерен адсорбента 4) радиальная диффузия адсорбата внутрь пор адсорбента 5) перенос продиффундировавших молекул адсорбата через неподвижный слой к стенкам пор 6) адсорбция молекул на стенках пор. [c.445]

    В соответствии с решением (2.72) процесс вытеснения раствора значительно растягивается во времени. В действительности этого происходить не будет, так как вещество из областей, где г i , будет диффундировать к центру капилляра в область высоких скоростей движения и выноситься потоком жидкости. Учет поперечной и продольной диффузии завершит построение капиллярной модели. Кривая кинетики будет подобна той, которая изображена на рис. 2.21 (кривая 3). [c.90]

    Значительно меньше изучены продольное перемешивание газа в барботажном, или дисперсном газожидкостном слое, а также поперечная турбулентная диффузия в газе и жидкости. Поэто 1у при расчете массопередачи в дисперсных системах в настоящее время принимается движение газа в режиме идеального вытеснения. Однако экспериментальные исследования [47] гидродинамической структуры потока газа в высоком барботажном слое, выполненные в колонне диаметром 300 мм с перфорированным листом, имеющим отверстия диаметром 1 мм при высоте слоя 5 м и скоростях газа, изменяющихся в пределах от 0,1 до 0,01 м/с, показали, что степень продольного перемешивания газа достаточно велика — коэффициенты продольного перемешивания оказались всего лишь в 3—5 раз меньше коэффициентов продольного перемешивания жидкости, при этом критерий Ре при увеличении скорости газа, сначала уменьшался, а затем мало изменялся, принимая значения Ре 8. [c.152]

    Определение коэффициента поперечной турбулентной диффузии по высоте вспененного слоя на контактных устройствах с перекрестным током фаз показало, что значение его изменяется в широких пределах (от 0,005 до 0,05 м /с) [41] и для невысоких скоростей газа и жидкости по порядку величины приближается к значениям коэффициента продольной турбулентной диффузии. Полученная в результате обработки экспериментальных данных по дисперсии потока на ситчатых тарелках графическая зависимость (рис. 4.10) является единственной в своем роде и может быть использована для оценки степени поперечного перемешивания жидкости по высоте барботажного слоя. [c.153]

    Экспериментальное изучение продольной и поперечной турбулентной диффузии в барботажном слое показало, что коэффициент радиальной диффузии в несколько раз меньше коэффициента продольной диффузии [2СГ, 48]. В газовой фазе поперечная турбулентная диффузия оказалась еще меньше по сравнению с продольной, особенно при низких скоростях газа [49]. Указанное обстоятельство подтверждается, в частности, возможностью использования однопараметрических диффузионных моделей для описания гидродинамики структуры потоков при отсутствии поперечной неравномерности в их движении. [c.153]


    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Опыты, проведенные в щироком интервале скоростей жидкости W, показали, что монотонное возрастание аа с w постепенно замедляется, а при значении w, соответствующем порозности е 0,7, наблюдается максимум Оэа в соответствии с отмеченным ранее максимумом пульсационных скоростей частиц [501, 514, 574]. Имеется указание [514] на различие величин продольного коэффициента диффузии (Оэя)в в разных точках поперечного сечения псевдоожиженного слоя. Одновременно указывается, что коэф([)и-циент продольной диффузии более чем на порядок превышает [c.189]

    Число Пекле, характеризующее поперечное перемешивание потока, находится, как отмечалось выше, в пределах от 8 до 15. В то же время продольное число Пекле примерно равно 2, откуда следует, что эффективный коэффициент продольной диффузии в 4—7 раз превышает эффективный коэффициент поперечной диффузии Е . Простые рассуждения показывают, почему это так. Свободный объем неподвижного слоя состоит из относительно больших пустот, соединенных узкнмп каналами. Например, при правильной ромбоэдрической упаковке сферических частиц доля свободного объема в плоскости, проходящей через центры сфер, составляет 9%. Если разделить слой между двумя такими плоскостями на три части, то доля свободного объема в средне трети будет равна 41 %, а в верхней и нижней третях — 18% при средней доле свободного объема 26%. Поэтому можно представить, что реагенты быстро перетекают из одного свободного объема в следующий, и ноток проходит как бы через цепь последовательно соединенных реакторов идеального смешения. В разделе VII.8 мы видели, что мгновенный импульс трассирующего вещества, введенного в первый реактор последовательности реакторов идеального смешения с общим временем контакта 0, размывается в колоколообразное распределение со средним временем [c.290]

    Как уже отмечалось, поперечную диффузию, обусловленную наличием насадки, следует учитывать в связи с поперечными градиентами температур. Необходимость учета продольной диффузии при расчете реакторов существенно зависит от соотношения его длины и размера зерен. Если это отношение равно или больше 100, что обычно имеет место на практике, то влиянием продольной диффузии можно пренебречьОднако в тонких слоях эффект может оказаться значительным [9, стр. 95]. К числу реакторов вытеснения с исключительно тонкими (в указанном смысле этого слова) слоями катализатора относится аппарат, применяемый для окисления аммиака. В нем реагирующий газ проходит всего через три или четыре слоя платиново-родиевой сетки, используемой в качестве катализатора. Если бы не влияние продольной диффузии, то для 100%-ного окисления аммиака хватило бы и меньшего числа таких сеток. [c.64]

    Рассмотрев задачу движения вещества в капилляре с учетом поперечной диффузии и распределения скоростей, Голей [337] показал, что возникающее размывание прп К = О приближенно описывается диффузионным уравнением с эффективным коэффициентом продольной диффузии (см. главу И)  [c.24]

    Скорости диффузии каких-либо молекул в полимере в продольном и поперечном направлениях могут значительно различаться. Если ориентированный полимер обладает фибриллярным типом надмолекулярного строения, то больше продольная скорость диффузии в случае полимеров с надмолекулярной структурой пластинчатого типа больше поперечная скорость диффузии. Диффузия всегда идет преимущественно по наиболее рыхлым элементам объема полимера (аморфные межкри-сталлитные прослойки в кристаллизующихся полимерах, межпачечные области в аморфных полимерах), и ее скорость определяется ориентированной надмолекулярной структурой. [c.70]

    При использовании схемы линейного источника представляется возможность учесть различия в значениях коэффициентов продольной О и поперечной 1) диффузии. Распределение концентрации индикатора в одномерном потоке, направленном вдоль оси х, в этом случае описывается уравнением (XII 1.1) для линейного мгновенного источника [c.193]

    Можно сделать вывод, что правильный путь к количественному описанию процессов в интенсифицированных аппаратах заключается в изучении механизма процесса, т. е. в изучении влияния интенсификации на элементарные составляющие процесса (дробление капель, изменение задержки дисперсной фазы, поверхности контакта фаз и коэффициента массопередачи). Разработка такого подхода, начатая ранее [8—10], и является задачей настоящей статьи. Наряду с уточнением сделанных ранее допущений о дроблении, гидравлике и массопередаче от капель, более полно учитываются особенности массопередачи в реальных аппаратах,— наличие продольной диффузии и поперечной неравномерности. Эти эффекты, общая теория которых дана в работе [11], существенно сказываются на работе противоточных аппаратов, особенно больших диаметров, и их изучение мы считаем одной из первоочередных задач. [c.301]

    В работах [192—194] на системе воздух — вода исследовали продольное перемешивание в барботажной колонне диаметром 300 мм и высотой 5,5 м. Для распределения воздуха использовали перфорированную тарелку с долей свободного сечения 1,5% и диаметром отверстий 2,5 мм. Плотность орошения во всех опытах была постоянной =278 см/с. Скорость воздуха хюг, отнесенная к полному сечению колонны, составляла 0,02 0,06 0,10 м/с. Поля коэффициентов продольной и поперечной турбулентной диффузии определяли с помощью системы трубок, теремеща.вшихся в. радиальном направлении. В центральную трубку стационарно подавали трассер (раствор метиленового голубого красителя), через остальные отбирали пробы жидкости. В работе [193] было измерено поле концентрации газа. [c.196]

    Рассмотрим теперь, в какой мере следует учитывать эти эффекты ири расчете реактора. Возыйем вначале реактор вытеснения цилиндрической формы, заполненный только реакционной смесью. В таком реакторе иоток может быть либо ламинарным, либо турбулентным. В нервом случае действуют обычная молекулярная диффузия и конвекция, вызванная неравномерностью распределения температур. Если длина реактора значительно больше его диаметра, как это обычно имеет место в действительности, молекулярная диффузия в продольном направлении, как правило, почти не сказывается на работе реактора. Тем не менее, поперечная молекулярная диффузия может оказаться существенной, по крайней мере, в газах. Как уже указывалось, она будет снижать влияние распределения скоростей, приводящего к отклонению от режима идеального вытеснения. К этому вопросу, рассмотренному в работе Босворта 18], мы вернемся в 2. 7. Конвективный перенос в радиальном направлении может иметь аналогичный эффект, т. е. способствовать приближению к модели идеального вытеснения. Продольный конвективный перенос, который может наблюдаться в вертикальных цилиндрических аппаратах при сильном нагревании жидкости или газа, оказывает противоположное воздействие и может значительно снизить производительность реактора по сравнению с рассчитанной на основе модели идеального вытеснения. Этого можно избежать, правильно выбрав конструкцию реактора, например, использовав перегородки, либо горизонтальный реактор вместо вертикального. [c.60]

    Исходя из общей формулы для функции макрораспределения (VI.78), можно вычислить также высшие моменты продольного и поперечного распределений примеси и найти значения высших семиинвариантов, характеризующих отклонение формы макрораспределения от нормального закона, соответствующего решению уравнения конвективной диффузии (У1.87). Такое исследование показывает, что установление нормального распределения концентрации примеси вещества замедляется под действием тех же причин, которые приводят к повышенным значениям эффективного коэффициента продольной диффузии. [c.241]

    Примечание, г — линейная скорость подвижной фааы а — коэффициент теплоотдачи Т т — температура стенки реактора й — диаметр реактора га — поверхность раздела фаз Т , с — температура и концентрация компонента на поверхности раздела фаз соответственно А — коэффициент массоотдачи Е — порозность слоя 1), эф и эф — аффективный коэффициент продольной и поперечной диффузии соответст 1енно Х эф и дф — эффективный коэффициент продольной и поперечной теплопроводности соответственно 1) , и Одф— эффективный ког<фициент продольной диффузии для подвижной ( азы и в грануле катализатора соответственно Хд и Хэф— [c.140]

    О — коэффициент диффузии в газовой фазе , хр — эффективный коэффициент продольной вихревой диффузии Дкин — эффективный коэффициент про/.ольной диффузии за счет конечной скорости сорбции Дафф — суммарный эффективный коэффициент продольной диффузии Ож — коэффициент диффузии в неподвижной жидкой фазе нутр — коэффициент диффузии вещества внутрь зерен адсорбента (1 — поперечный размер зерна сорбента ( к — радиус капилляра [c.4]

    Для обессоливанпя и рассортировки молекул скорость элюции может быть выбрана довольно большой — порядка 20 мл/см- ч (следует предварительно проверить сжимаемость геля ). Как было показано в гл. 1, с позиций достижения наилучшего разрешения пиков существует оптидгальная скорость хро.матографического фракционирования. Слишком медленная элюция приводит к резкому уширению пиков за счет продольной диффузии, слишком быстрая — к более ностененному их уширению за счет нарушения равновесия поперечной диффузии. Оптимальная скорость зависит от размеров молекул и гранул, увеличиваясь с уменьшением тех и других. Для ориентировки можно указать, что оптимальная скорость элюции для белков составляет примерно 2 мл/см -ч (для определения объемной скорости элюции это значение надо умножить на илощадь сечения колонки). Однако нередко имеет смысл в интересах оптимизации условий эксперимента в целом значительно отступить от оптимальной скорости элюции в сторону ее увеличения. [c.136]

    Коэффициенты В, См и Сд соответствуют продольной диффузии, коэф-фшцтенту массшереноса в подвижной фазе и коэффициенту массопереноса в неподвижной фазе. Вклад отдельных слагаемых в ур. 5.1-19 объясняется более подробно в табл. 5.1-3 и на рис. 5.1-5. В капиллярной хроматографии коэффициент А равен нулю, поскольку отсутствует поперечный поток. [c.239]

    Все три способа разделения, колоночная, линейная ТСХ и круговая ТСХ, характеризуются продольной диффузией, не мешающей разделению, одпако колоночная хроматография характеризуется еще диффузией в двух поперечных направлениях, которая мешает разделению. В линейной ТСХ диффузия протекает в двух взаимно перпендикулярных направлениях (условное допущение), причем поперечная диффузия не мешает разделению. В круговой ТСХ продольная диффузия ухудшает разделение, тогда как поперечная диффузия его улучшает в связи с тем, что радиусы сфер диффузии, в которых происходит движение молекул, суммируются в поперечном направлении. Исследования, посвященные установлению подлинности чисел разделений, не превышающих 100, нашли положительное подтверждение (см. табл. 2.3). Здесь следует рассмотреть тот факт, что число разделений (модель III) получено при ширине пика о = 0,03 и bj = 0,06. Величина — й., = 0,03 соответствует числу тарелок Л эфф = 1500 для даггной конкретной системы. Необходимо также выполнение ряда других условий ширина стартового пятна (например, после фокусировки, как это описано в гл. 3 и 5) и величина молекулярной диффузии вместе не должны превышать 3% длины пути разделения, температура и длительность разделения должны быть достаточно низкими. Величину = 0,03 трудно получить. [c.59]

    При изучении диффузии газа методом ввода на некоторой высоте исевдоожиженного слоя какого-либо меченого газа последний обнаруживается даже ниже точки его ввода [269, 504, 564]. Заметим, что ири ЖИДК0С1Н0М псевдоожижении обратного иеремешивания жидкости, как правило, ие наблю.дается, что свидетельствует о меньшем значении коэффициента продольной диффузии, чем ири псевдоожижении газами. Концентрация меченого вещества в последних ниже точки его ввода, как можно видеть из рис. У1-14, значительно меньше, чем в верхних сечениях слоя. При этом для сечений выше точки ввода меченого газа характерен крутой профиль концентраций (чем дальше сечение от точки ввода, тем менее круто изменяются концентрации в этом поперечном сечении), а для расположенных ниже этой точки — весьма пологий. [c.190]

    Д ж. X ар деболь сказал, что предыдущие ораторы уже отметили важность проблемы моделирования, возникающе при проектировании аппаратов с псевдоожиженным слоем. При использовании метода индикаторов экспериментальные данные можно истолковывать двояко. В первой интерпретации, пренебрегая радиальным градиентом концентраций, предполагали, что перемешивание осуществлялось эффективной продольной диффузией. В этом случае идентичные кривые перемешивания для слоев различных размеров были получены путем нанесения на график концентраций меченого вещества против EtjL , где Е — коэффициент эффективной продольной диффузии, t—время и L — высота слоя. Однако необходимо рассмотреть возможность применения продольной диффузии в общем случае. Другой путь интерпретирования экспериментальных данных — предположение циркуляции твердых веществ одновременно с радиальным поперечным потоком. Теоретическую оценку этой модели механизма перемешивания дают кривые, показанные на рис. 1. [c.158]

    В этом случае моделирование аппаратов с исе -4,1оожижеи-пым слоем определяется величиной vtlL. При большом поперечном потоке получаются типы кривых, аналогичные кривым, полученным при продольной диффузии. [c.158]

    В соответствии с диффузионной моделью было принято [83а, 84], что все гидродинамические эффекты, осложпяюш ие массопередачу (турбулентная диффузия, продольное перемешивание конвекцией и поперечная неравномерность), могут быть приближенно описаны как продольная диффузия с эффективным коэффициентом 1)9.Решение уравнения массопередачи, включаюш,ее диффузионные [c.108]

    В данном случае основой модели является модель вытеснения, осложненная продольным (вдоль по потоку) и 1юиеречным (по радиусу трубы) перемешиванием, следующим формальному закону диффузии. Параметрами, характеризующими модель, служат коэффициенты продольной и поперечной Вг диффузии и температуропроводности Аг и а, соответственно. [c.549]

    Бондарев Э. А., Шкирич А. Р. Экспериментальное исследование продольной и поперечной конвективной диффузии в пористой среде. — Изв. АН СССР, Механика , 1965, № 6, с. 138—141. [c.265]


Смотреть страницы где упоминается термин Поперечная и продольная диффузия: [c.24]    [c.220]    [c.272]    [c.89]    [c.183]    [c.159]    [c.256]    [c.73]    [c.460]    [c.550]    [c.191]   
Смотреть главы в:

Теория химических реакторов -> Поперечная и продольная диффузия




ПОИСК





Смотрите так же термины и статьи:

Диффузия продольная



© 2025 chem21.info Реклама на сайте