Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярное взаимодействие дисперсных частиц

    Выше отмечалось, что дисперсные системы классифицируют по степени молекулярного взаимодействия дисперсной фазы и дисперсионной среды на лиофильные и лиофобные (см. гл. XV, 3). Дисперсные системы классифицируют, кроме того, по характеру взаимодействия между частицами. [c.225]

    Выражение для силы и энергии молекулярного взаимодействия плоских частиц в жидкой дисперсионной среде имеет простой вид для расстояний, существенно больших по сравнению с основной длиной волны в спектре поглощения веществ, составляющих дисперсную систему. [c.143]


    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ ДИСПЕРСНЫХ ЧАСТИЦ [c.30]

    Некоторые исследователи [73,106] проводят сравнение величин У,п, относящихся к взаимодействию частиц в чистой дисперсионной среде и в растворах полимеров, отсчитывая соответственно расстояние либо от твердой поверхности, либо от внешней границы адсорбционного слоя. При этом, естественно, нельзя сделать вывод об ослаблении (или усилении) молекулярного притяжения за счет образования полимолекулярной пленки защитного коллоида. Кроме того, если Лз < Л1 и расстояние отсчитывается от поверхности адсорбционного слоя, находят очень низкие значения энергии взаимодействия. Поэтому избранный нами путь рассмотрения вопроса о молекулярном притяжении дисперсных частиц в растворах защитных коллоидов, по-видимому, более приемлем для получения информации о влиянии высокомолекулярных соединений на устойчивость дисперсных систем. [c.60]


    Количественное описание взаимодействия дисперсных частиц принципиально возможно па основе современного учения о поверхностных силах и сводится к определению потенциальной энергии частиц или, иначе, к установлению баланса действующих между ними сил. Эта задача на основе общей концепции расклинивающего давления тонких жидких слоев была сформулирована в 1937 г. Б. В. Дерягиным. Им был разработан метод расчета свободной энергии и сил, действующих между двумя заряженными поверхностями в растворах сильного электролита, и показано, что при определенных условиях возможно появление на кривой потенциальной энергии взаимодействия второй энергетической ямы на относительно далеком расстоянии от поверхности [1]. При учете молекулярных сил притяжения Ван-дер-Ваальса— Лондона и ионно-электростатических сил отталкивания установлены общие закономерности взаимодействия в низкоконцентрированных растворах электролитов двух пластин и с некоторыми ограничениями двух одинаковых шаров, и на этой основе разработана теория устойчивости и коагуляции коллоидов [1—6]. Последняя была распространена на взаимодействие трех плоских частиц [c.130]

    Молекулярно-кинетическая теория рассматривает коллоидные системы как частный случай истинных растворов дисперсную фазу — как растворенное вещество, дисперсионную среду — как растворитель. Это позволяет вполне удовлетворительно объяснить явления осмоса, диффузии,, седиментационного равновесия и другие неспецифические свойства коллоидов (т. е. свойства, не связанные с проявлением молекулярных взаимодействий на поверхности коллоидных частиц). [c.19]

    К первой ступени относятся явления, происходящие на атомно-молекулярном уровне и связанные с образованием кристаллической фазы — это гомогенное и гетерогенное зародыше-образование. Вторая ступень определяет кинетические закономерности роста отдельных граней кристаллов. Явления переноса количества движения, массы и энергии при взаимодействии дисперсных частиц с кристаллизуемой системой характеризуют третью ступень. Четвертая ступень связана с моделированием процесса массовой кристаллизации. Замыкает структурную схему пятая ступень, на которой рассматривается гидродинамика непосредственно дисперсных систем и вопросы разработки конструкций кристаллизаторов и создания методики их расчета. [c.12]

    Суспензии твердых углеводородов в нефтях или нефтепродуктах относятся к грубодисперсным и лиофильным системам. Они характеризуются интенсивными молекулярными взаимодействиями между частицами дисперсной фазы и дисперсионной среды, что затрудняет отделение жидкой фазы от твердой. В результате твердые углеводороды при кристаллизации удерживают значительную часть низкоплавких компонентов. В суспензиях твердых углеводородов в углеводородной среде дисперсная фаза образована частицами неправильной формы с сильно развитой поверхностью. [c.28]

    В течение 7 мин заканчивается процесс перераспределения и утончения гидратных пленок и медленные эластические деформации достигают минимального развития. Эластичность системы становится наименьшей. Процесс диспергирования гидрослюдистых частиц продолжается еще 1—2 мин. По истечении 8—9 мин диспергация достигает наибольшего развития, при котором быстрые эластические деформации становятся максимальными и пластические — минимальными. Значительно возросшие силы молекулярного взаимодействия между частицами дисперсной фазы начинают препятствовать их последующему разрушению. Процесс диспергации завершается. Возникшая коагуляционная структура обладает наиболее высокими величинами энергии связи, структурно-механических констант и периода истинной релаксации. [c.195]

    Расклинивающее давление возникает при сближении двух дисперсных частиц, взаимодействующих с дисперсной средой за счет перекрытия а) электромагнитных флюктуационных полей, образующих сферу действия молекулярно-поверхностных сил в окрестностях каждой фазы б) двойных ионных слоев в граничных слоях жидкости, содержащей растворенные ионы в) граничных слоев с измененной под влиянием поверхностных сил структурой [74]. Причем давление положительно при действии сил отталкивания, отрицательно при действии сил притягивания. [c.83]

    Особые свойства пограничных слоев среды возникают в результате молекулярного взаимодействия ее с поверхностью частиц фазы. В том случае, когда равнодействующая молекулярная сила Л, отказывающая действие на молекулы пристенного слоя жидкости со стороны твердой поверхности и молекулы объемной фазы жидкости, направлена в сторону поверхности дисперсной фазы, молекулы жидкости прилипают к поверхности, смачивают ее, т. е. в той или иной мере сольватируют, целесообразно сольватацию считать положительной. Когда же равнодействующая молекулярных сил направлена внутрь жидкой фазы, поверхность не сольватируется, то отношение жидкости к твердой поверхности целесообразно считать отрицательной сольватацией поверхности. [c.8]


    Центральная роль в теории НДС отводится представлениям о существовании дисперсных частиц, или структурных единиц, различного типа. Особенностью последних, в отличие от дисперсных частиц классических дисперсных систем, является то, что они формируются в нефтяных системах, состоящих из большого числа компонентов, в том числе гомологов, относящихся к различным классам органических соединений с мало различающимися потенциалами межмолеку-лярного взаимодействия. Поэтому существование совокупности молекул с близкими потенциалами меж-молекулярного взаимодействия как единого целого в виде структурных единиц находится в сильной зависимости от внешних условий (температуры, давления, изменения состава дисперсионной среды и т. д.). Внутреннее строение структурных единиц, состоящих из ядра и примыкающего к нему адсорбционно-сольватного слоя, также имеет свои особенности, заключающиеся в условности границ раздела между ядром, адсорбционно-сольватным слоем и дисперсионной средой. Под влиянием внешних условий происходит экстремальное изменение размеров ядра и адсорбционно-сольватного слоя структурных единиц НДС, что проявляется через соответствующее экстремальное изменение макросвойств НДС и, несомненно, влияет на результаты их технологической переработки. Отметим, что в отличие от принятой в настоящее время технологии предлагаемая физико-химическая технология, обеспечивающая интенсификацию как недеструктивных, так и деструктивных технологичес- [c.7]

    Таким образом, с позиции современных представлений о твердом состоянии процесс парафиноотложения на поверхности подложки представляет собой контактное взаимодействие молекулярного твердого соединения (частицы дисперсной фазы) с атомным твердым соединением (поверхность подложки). Как видно из экспериментальных данных, такое взаимодействие может протекать по различным механизмам в зависимости от кристаллической структуры материала подложки. [c.110]

    При структурировании дисперсные частицы либо непосредственно контактируют друг с другом, вытесняя полностью дисперсионную среду из места контакта и образуя наиболее прочную структуру, в то же время отличающуюся хрупкостью, либо разделены тонкой жидкостной прослойкой, придающей структуре пластичность или эластичность. При увеличении толщины этой прослойки и, как следствие, увеличении расстояния между частицами дисперсной фазы и ослаблении молекулярных сил их взаимодействия прочность структуры снижается, а по достижении некоторого значения она может быть разрушена уже слабыми физическими, например механическими, воздействиями, в частности встряхиванием или перемешиванием. Для многих коагуляционных структур подобное разрушение может быть обратимо, то есть по истечении времени разрушенные структуры восстанавливаются, постепенно приобретая первоначальную прочность. Эта способность разрушенных физическими воздействиями структур самопроизвольно восстанавливаться во времени называется тиксотропией. [c.30]

    Переходя от рассмотрения молекулярного взаимодействия конденсированных фаз, разделенных плоской прослойкой дисперсионной среды, к анализу молекулярного взаимодействия частиц дисперсной фазы, необходимо прежде всего отметить, что энергию и силу взаимодействия следует относить к паре частиц в целом, а не к единице площади прослойки, как это делалось выше. При этом энергия взаимо- [c.249]

    Как было показано ранее (см. соотношение IX—19), энергия молекулярного взаимодействия частиц зависит от природы дисперсной фазы и дисперсионной среды, что отражается величиной сложной константы Гамакера А. С учетом этого, условие устойчивости системы к коагуляции можно представить в виде  [c.253]

    Катионный обмен глинистых минералов позволяет в значительных пределах изменять структурно-механические характеристики и величину энергии связи их коагуляционных структур. Однако на характер деформационного процесса значительного воздействия он не оказывает (рис. 6). Происходит это потому, что катионный обмен не влияет ни на форму кристаллов, ни на число нарушений кристаллической структуры минерала, изменяя только дисперсность частиц и толщину гидратных пленок, т. е. увеличивая или уменьшая величину сил молекулярного взаимодействия. [c.23]

    Под агрегативной устойчивостью следует понимать способность системы противостоять процессам, ведущим к уменьшению свободной энергии поверхностей раздела частиц дисперсной фазы с дисперсионной средой. Увеличение размеров частиц, ведущее к уменьшению поверхности, может осуществляться в результате изотермической перегонки, коалесценции (слияния частиц) и коагуляции (агрегирования частиц при слипании) [54]. Основным процессом изменения дисперсности для суспензий и золей является коагуляция. Для нее необходим непосредственный контакт поверхностей частиц (по крайней мере на расстоянии молекулярного взаимодействия), поэтому тепловое движение является важным фактором стабилизации, особенно для свободнодисперсных систем. [c.41]

    Дисперсные частицы и дисперсионная среда относятся к различным фазам. Система может существовать из разных фаз только в том случае, если межмолекулярные взаимодействия в граничных фазах различны. Единственной системой, в которой межмолекулярные взаимодействия отсутствуют, является идеальный газ. Интенсивность молекулярных взаимодействий возрастает при переходе от реальных газов к твердым телам. [c.15]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Столь малое значение 5 свидетельствует о том, что для приведенных условий потенциалы частиц выравниваются практически при контакте друг с другом. Заметим еще, что полученное значение 5 меньше радиуса действия молекулярных сил притяжения (-5 10 мкм). Этим объясняется то, что процесс перераспределения зарядов между мелкими частицами протекает незаметно. Кроме того, из проведенных оценок следует, что исследование процесса взаимодействия проводящих частиц дисперсной среды в присутствии внешнего электрического поля необходимо проводить с учетом как электростатических, так и молекулярных сил между частицами, особенно на конечной стадии сближения частиц. [c.316]

    Во время деформации смазок, в частности, при их прокачивании по мазепроводам и работе в самых разнообразных узлах трения, связи перманентно разрываются и восстанавливаются. Таким образом, тиксотропные свойства консистентных смазок, определяемые молекулярным взаимодействием дисперсных частиц, образующих структурный каркас, и способностью этих частиц взаимодействовать друг с другом при приближении на расстояние действия молекулярных сил, являются основными факторами, характеризующими их реологические свойства. Не-инвариантность получаемых на разных приборах значений реологических параметров обусловлена многообразием и несопоставимостью условий деформирования смазок. Несоответствие между величиной реологических параметров смазок и их поведением 1В эксплуатации объясняется главным образом различиями в условиях работы, в частности в физических и химических факторах (перепады температур, действие света, воздуха, влаги, каталитическое воздействие материалов и др.). [c.125]

    Таким образом, на температуру застывания системы возможно оказывать наиболее полное целенаправленное влияние, если система первоначально находится в молекулярном состоянии. Ингибирование парафиноотложения в нефтяных системах можно проводить в любых условиях их существования, даже в турбулентном потоке, когда гидродинамически подвижными телами в виде обломков разрушенных структур являются достаточно крупные агрегативные комбинации. Как показывает накопленный феноменологический материал, подобные взаимодействия дисперсных частиц независимо от их агрегатного состояния возможно описать общими закономерностями в различных нефяных дисперсных системах. [c.241]

    В ПКС последовательное изменение параметров (степень упорядочения, размер и форма частиц, величина межчастичных расстояний, природа фаз, наличие примесей) вызывает обычно соответствующее изменение упруго-пластичных свойств. При этом отчетливо выявляются особенности в природе и закономерностях действия сил между микрообъектами, что привлекает внимание исследователей в области поверхностных явлений, молекулярной физики, биофизики, а также специалистов по переработке дисперсных систем, которым необходимо знать оптимальные условия и режимы технологических процессов протекания элементарных актов взаимодействия микрообъектов и образования коллоидных структур. Так, например, многие лакокрасочные композиции из дисперсий полимеров вместе с частицами пигментов образуют малопрочные ПКС, превращающиеся при формировании покрытий в необратимые структуры. На изменение свойств композиций со временем, а также в процессах сушки и термической обработки решающее влияние оказывает взаимодействие дисперсных частиц друг с другом и с жидкой средой. Хорошее покрытие с равномерным распределением пленкообразующего вещества получается, если дисперсия как в исходном состоянии, так и при ее концентрировании сохраняет достаточную устойчивость к непосредственному слипанию частиц, т. е. когда в системе отсутствует коагуляция (рис. 2) [6]. При этом частицы взаимодействуют через разделяющие их жидкие прослойки. Аналогично в случае керамических масс, шликеров и многих других паст ( структурированных суспензий ), важнейшие технологические свойства которых — пластичность и способность к токсотропным превращениям — определяются прежде всего взаимодействием частиц друг с другом и с дисперсионной средой [7—9]. Чтобы взаимодействие было опти- мальным, а также для выполнения других требований, предъ- [c.11]

    Особую роль играет дисперсность частиц при их седиментации в аэрозолях. При применении закона Стокса к аэрозолям основное значение приобретает требование сплопиюсти среды, при нарушении которой законы гидродинамики неприменимы. В аэрозолях среду мол-сно считать сплоии10й, если размер частиц значительно превышает средний свободный пробег молекул газа. При этом условии частица взаимодействует сО множеством молекул среды. При нормальных условиях для воздуха длина свободного пробега молекул составляет около 0,1 мкм. Закон Стокса Ргр г) в этом случае удовлетворительно описывает движение частиц с радиусом более 5 мкм. Если же длина свободного пробега молекул значительно больше размера частицы, последняя будет находиться в тех же условиях, что и отдельные молекулы газа. Среда по отношению к частице оказывается дискретной, и на движение частицы распространяются законы молекулярно-кинетической теории, которая [c.193]

    С углублением переработки нефти содержание асфальто-смолистых веществ в топливах будет увеличиваться, поэтому все более острой становится проблема производства стабильных котельных топлив. Асфальтены в мазутах находятся в коллоидном состоянии. Устойчивость асфальтено-содержаших дисперсных систем зависит от природы циклического углеводорода и его 1Сонцентрации в дисперсной среде. Наличж ароматических и нафтеновых углеюдородов повышает седиментацион-ную устойчивость дисперсной системы, причем для ароматических углеюдородов этот эффект значительно больше, чем для нафтеновых ароматические углеводороды более склонны к взаимодействию с молекулами асфальтенов, растворимость последних тем больше, чем выше концентрация ароматического компонента. В такой среде асфальтены диспергируются с образованием тонкодисперсных коллоидньк и молекулярно-дисперсных частиц. В среде парафиновых углеюдородов образуется преимущественно грубодисперсная система. Так как нафтеновые угле-юдороды по строению являются промежуточными между парафиновыми и ароматическими, то и кинетическая и агрегативная устойчивость [c.111]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    По характеру молекулярных взаимодействий на границе раздела фаз все дисперсные системы могут быть разделены на две большие группы. Это, с одной стороны, лиофильные системы, для которых характерна высокая степень родственности дисперсной фазы и дисперсионной среды и соответственно компенсирован-ности связей на границе раздела — сглаженность границы такие коллоидные системы, например критические эмульсии, могут образовываться самопроизвольно и обнаруживают полную термодинамическую устойчивость как относительно агрегирования, в макрофазы, так и относительно диспергирования до молекулярных размеров частиц. С другой стороны, это разнообразные лиофобные — коллоидно- и грубодисперсные системы, в которых дисперсная фаза и дисперсионная среда менее родственны и различие граничащих фаз по их химическому составу и строению проявляется в существенной некомпенсированности поверхностных сил (в избытке энергии) на межфазной границе. Такие системы термодинамически неустойчивы и требуют специальной стабилизации. Сюда относятся все аэрозоли, пены, многочисленные эмульсии, золи и т. д. Между теми и другими системами нельзя провести четкого разделения, поэтому представляется возможным рассматривачь широкий спектр промежуточных состояний. [c.7]

    Переходя от рассмотрения молекулярного взаимодействия конденсированных фаз, разделенны плоской прослойкой дисперсионной среды, к анализу молекулярного взаимодействия частиц дисперсной фазы, необходимо прежде всего отметить, что энергию и силу взаимодействия следует относить к паре частиц в целом, а не к единице площади прослойки, как это делалось выше. При этом энергия и сила взаимодействия частиц определяются не только расстоянием между частицами и значением сложной константы Г амакера, но также размером и формой взаимодействующих частиц. [c.299]

    Г. А. Мартынов представляет себе действие адсорбционных полислоев поверхиостно-активны.х веществ следующим образом. Молекулярные силы притяжения универсальны, т. е. действуют между любыми телами., Представим теперь себе две одинаковые частицы, дисперсную фазу которых обозначим через, Д а полимолекулярно адсорбционный слой через 2 (рис. IX, 8), Очевидно, энергия взаимодействия самих частиц будет равна  [c.284]

    Предлагаемая читателю книга посвящена дальнодействующим поверхнрстным силам, влияние которых не ограничено монослоем, а распространяется на десятки и сотни прилегающих к поверхностям слоев молекул. Переход от господствовавшей ранее концепции близкодействия к концепции дальнодействия означал одновременно переход от мира двух измерений к несравненно более богатому физико-химическими следствиями миру трех измерений. Этот переход был длительным и многоступенчатым. Начало было положено теорией Гуи—Чепмана диффузных ионных атмосфер, которая совместно с теорией молекулярных сил Лондона послужила основой для развития (начиная с 1937 г.) теории устойчивости лиофобных коллоидов Дерягина—Ландау—Фервея—Овербека (ДЛФО). В дальнейшем эта теория была усовершенствована за счет введения сил иного рода и обобщена путем ее приложения к взаимодействию неодинаковых частиц (гетерокоагуляция). Теория ДЛФО лежит в основе таких крупных практических проблем, как флотация, водоочистка, адгезия частиц, управление свойствами дисперсных структур, массообмен в пористых телах и взаимодействие биологических клеток. [c.3]

    Единой теории и общепринятых представлений о механизме са-жеобразования до настоящего времени нет. Большинство исследователей считает, что этот процесс имеет радикальную природу. Первичным актом сажеобразования считается образование радикала-зародыша. При его взаимодействии с молекулами исходного сырья могут образоваться новые радикалы, но в отличие от обычного цепного радикального процесса молекулярная масса радикала-зародыша сажевой частицы растет. По мере роста активность укрупненных радикалов уменьшается и в некоторый момент радикал-зародыш теряет свойства радикала, приобретает свойства физической поверхности и превращается в минимально возможную сажевую дисперсную частицу. [c.403]

    Основу физической модификации ингредиентов составляют повышение дефектности и дисперсности кристаллов, снижение температур плавления компонентов в бинарных и сложных эвтектических смесях и твердых растворах заме-ш,ения [34]. Эти явления, характерные для молекулярных кристаллов [241, 248], объясняются механизмом эвтектического плавления смеси молекулярных кристаллов, описанным в работах [244, 249]. Согласно этим работам при контактировании кристаллов двух веществ происходит схватывание их поверх-ностаых слоев с образованием единой системы благодаря меж-молекулярному взаимодействию, приводящему к упругому деформированию кристаллической решетки в пограничных зонах и возрастанию дефектности кристаллических частиц. В результате этого на поверхности двух крист 1ЛЛов сосредоточивается запас избыточной энергии, причем самопроизвольное ее уменьшение может быгь достигнуто за счет снижения межфазного поверхностного натяжения. Нагрев системы приводит к плавлению граничных зон кристалла с более низкой Тпл, что обеспечивает резкое уменьшение избыточной энергии. При этом в бинарной смеси кристаллы вещества с более высокой Тот являются активной подкладкой, уменьшающей работу об разования зародышей жидкой фазы в поверхностном слое кристалла вещества с более низкой Тпд, стремящегося приспособиться к структуре подкладки, что обуславливает сниже- [c.48]

    С известной степенью приближения можно считать, что частицы дисперсных систем имеют сферическую форму. В таком случае в теории устойчивости можно ограничиться анализом сил, действующих между частицами сферической формы. Как уже было отмечено выше, в теории ДЛФО это силы молекулярного притяжения и силы электростатического отгалкивания двойных электрических слоев. Формула (3.6.4) для энергии молекулярного притяжения сферических частиц получена тем же методом, что и формула (3.6.2) для взаимодействия плоских поверхностей. Однако для электростатического взаимодействия сфер задача подобным образом не решена (если не считать некоторых весьма частных условий), что порождает необходимость поиска альтернативах путей вычисления энергрш или силы взаимодействия двух сферических тел. Такой путь предложен Б. В. Дерягиным и известен под названием переход Дерягина . Он в настоящее время является единственным универсальным средством преобразования формул расклинивающего давления (или его энер- [c.625]

    Увеличение концентрации электролита, как и в случае одинаково заряженных частиц, ослабляет их электростатическое взаимодействие, но в случае разноименно заряженных частиц это ведет к повышению устойчивости дисперсной системы. В принципе этим путем может быть достигнуто состояние полной устойчивости смеси против коагуляции благодаря тому, что в случае частиц различной химической природы возможно обращение знака их молекулярного взаимодействия. Такая возможность представляется, если энергия взаимодействия частиц со средой больше, чем энергия молекулярного взаимодействия разных по природе веществ многокомпонентной системы. Разумеется, что при этом концентрация электролита должна быть не настолько высокой, чтобы вызвать обычную (гомогенную) коагуляцию одного из компонентов системы. Одновременное выполнение всех этих требований, скорее всего, достижимо только в исключительных случаях и поэтому указанный путь регулирования свойств многоком-нонентных смесей не представляет большого интереса. Более обещающим является путь, связанный с влиянием соотношения компонентов, имеющих разный по знаку потенциал, на коагуляцию смеси [11]. [c.635]


Смотреть страницы где упоминается термин Молекулярное взаимодействие дисперсных частиц: [c.68]    [c.17]    [c.130]    [c.6]    [c.11]    [c.29]    [c.284]    [c.294]    [c.298]    [c.60]   
Смотреть главы в:

Коагуляция и устойчивость дисперсных систем -> Молекулярное взаимодействие дисперсных частиц




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ион-молекулярные

Дисперсные частицы

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте