Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термические свойства летучих соединений

    ТЕРМИЧЕСКИЕ СВОЙСТВА ЛЕТУЧИХ СОЕДИНЕНИЙ [c.69]

    Процессы термической деструкции органических соединений изучены недостаточно подробно. Пока нельзя предсказать количественный состав образующихся при пиролизе летучих продуктов деструкции, зная строение образца и условия его пиролиза. Не решена и представляющая большой научный и практический интерес обратная задача установление строения и состава анализируемого вещества по продуктам пиролиза, хотя конкретные исследования, посвященные установлению строения пиролизуемого образца по продуктам его пиролиза, и описаны в литературе. Поэтому при решении практических задач чаще всего задача исследователя состоит в установлении эмпирической корреляции между строением, составом и другими свойствами исследуемого образца и спектром образующихся при пиролизе продуктов. На практике реализуются различные по сложности хроматографические спектры продуктов пиролиза в зависимости от природы и условий пиролиза. [c.72]


    У кадмия отсутствуют летучие фториды, а наиболее приемлемым для центрифугирования является металлоорганическое соединение Сс1(СНз)2 — диметилкадмий. Диметилкадмий (ДМК), во-первых, обладает достаточной упругостью паров при комнатной температуре, что может обеспечить должное газонаполнение центрифуг и достаточные потоки в ступенях каскада. Во-вторых, химическая активность и термическая устойчивость этого соединения находятся в пределах, допускающих возможность осуществления стационарного режима работы центробежного каскада. Свойства ДМК изучены настолько, что позволяют говорить об этом соединении как далеко не уникальном. Необходимо отметить, что вещество, используемое в качестве рабочего газа при центрифугировании, должно пройти предварительную очистку от примесей, поскольку их наличие существенно влияет на получаемые результаты. Давление паров ДМК составляет 25-30 мм рт. ст. (при комнатной температуре), что позволяет обеспечить стабильный поток подаваемого в каскад вещества, величина которого во многом задаёт производительность разделительной установки. [c.217]

    Вследствие загрязняющего действия материала аппаратуры для получения простых веществ особой чистоты стремятся использовать низкотемпературные процессы их выделения из чистых более сложных веществ. В зависимости от свойств элементов, определяемых их положением в периодической системе Д. И. Менделеева, используются легколетучие гидриды, галиды либо металлорганические соединения (МОС). Летучие и легкоплавкие соединения подвергаются глубокой очистке дистилляционными (ректификационными) и различными кристаллизационными методами без особых затруднений в выборе материала аппаратуры. Выделение простых веществ производится, как правило, термическим распадом сложного соединения или восстановлением его водородом. Загрязнения углеродом, образуемые при распаде МОС, удаляются (где возможно) вымыванием водородом. С повышением требований к чистоте металлов получение их через летучие соединения должно занять ведущее положение среди других методов. Рис. 1, табл. 4. [c.227]

    Интерпретация пирограмм и обработка получаемой при этом информации для количественного анализа нелетучих соединений методом ПГХ отличается от традиционных методов обработки хроматограмм летучих соединений, что обусловлено спецификой метода ПГХ, включающего процесс термической деструкции анализируемого образца, а также особенностями свойств анализируемых высокомолекулярных соединений и спецификой задач. [c.84]


    Поэтому для придания пеку волокнообразующих свойств из него должны быть предварительно удалены низкомолекулярные летучие соединения кроме того, он должен быть подвергнут термической и термоокислительной обработке для повышения молекулярного веса. Несмотря на дополнительные издержки и удорожание технологического процесса, экономически вполне оправдано применение пека в качестве исходного сырья для получения углеродного волокна. [c.236]

    На заключительной стадии анализа осадок (форму осаждения) после фильтрования и промывания высушивают или прокаливают и получают в результате такой термической обработки гравиметрическую форму — соединение, пригодное для взвешивания. Высушивание или прокаливание осадка продолжают до тех пор, пока его масса не станет постоянной, что обычно рассматривается как критерий достигнутой полноты превращения формы осаждения в гравиметрическую форму и указывает на полноту удаления летучих примесей — растворителя, адсорбированных солей аммония и т. д. Осадки, полученные в результате реакции с органическим осадителем (диметилглиоксимом, 8-оксихинолином и др.), обычно высушивают, осадки неорганических соединений, как правило, прокаливают. В зависимости от физико-химических свойств осадка при прокаливании он остается неизменным или претерпевает существенные химические превращения. Неизменным при прокаливании остается, например, сульфат бария. Осадок гидроксида железа переходит в оксид  [c.151]

    Таким образом, сочетание газовой хроматографии и масс-спектрометрии является высокоэффективным и чувствительным методом изучения состава сложных смесей органических соединений, который позволяет определять компоненты, содержащиеся в следовых количествах. Исследуемые этим методом вещества должны быть летучими, термически стабильными и иметь хорошие хроматографические свойства. [c.44]

    Процессы галоидирования широко применяются при переработке как алифатических, так и ароматических углеводородов. В ряде случаев введение одного или нескольких атомов галоида придает этой молекуле повышенную реакционную способность. Однако замена водородных атомов молекул углеводорода атомами галоида может привести и к образованию весьма инертных соединений, мало склонных к химическим превращениям. Свойства галоидпроизводных отличаются от свойств исходных углеводородов обычно галоидпроизводные мало горючи или совсем негорючи, термически более стойки, чем углеводороды, менее летучи и т. д. Замещая галоид другими атомами или группами, можно получить разнообразные вещества, синтез которых непосредственно из углеводородов затруднителен или вообще невозможен. Наиболее широко используются и вырабатываются в наибольших количествах хлорпроизводные углеводородов. Их ценные свойства и доступность элементарного хлора, необходимого для их получения, в значительной степени способствовали развитию промышленного производства хлорорганических соединений. [c.174]

    Основные свойства твердых горючих ископаемых, влияющие на их газификацию. Спекаемость топлива. Некоторые угли (преимущественно каменные) в области температур 400— 450 °С начинают переходить в пластическое состояние благодаря образованию жидких продуктов их термического разложения. При 510—520°С пластическая масса начинает затвердевать, а к 600 С процесс спекания завершается. Спекаемость зависит от содержания в топливе летучих и их состава, характеризуемого показателем (С +№)/0 , который отражает соотношение количества углеводородных и кислородсодержащих соединений в летучих продуктах. Чем выше указанный показатель, тем интенсивнее спекается топливо. К неспекающимся топливам относятся торф, бурые угли, антрациты, тощие и длиннопламенные каменные угли. [c.107]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]


    Как и в других соединениях, ковалентная связь в гидридах обладает большой энергией— 60—140 ккал1моль, уменьшающейся (в одной и той же группе) с увеличением атомного веса элемента. Гидриды элементов подгрупп IVA—VIIA обладают свойствами, присущими соединениям с ковалентной связью низкомолекулярные соединения газообразны или легко летучи обладают высокой термической стабильностью от 400 до 1000° С и более не проводят электрический ток в большинстве случаев хорошо растворимы. В твердом состоянии эти гидриды имеют молекулярную решетку в газообразном — молекулы не ассоциированы. [c.15]

    После формования заготовки проходят термическую обработку — обжиг — в печах (электрических, газовых туннельных или многокамерных кольцевых) в защитной среде (для предохранения от деформации и окисления). В качестве защитной среды применяют так называемую засыпку из дисперсных углеродистых и минеральных материалов (мелочь пекового кокса, отходы графитировоч-ных печей, антрацит, речной песок) [102]. В зависимости от вида изделий обжиг можно проводить и без защитной среды в контейнерах в атмосфере выделяющихся летучих соединений или в инертной среде [32]. Обжиг проводят в течение 20—40 суток. В результате этой операции зеленые заготовки вследствие карбонизации связующего переходят в качественно новое (аморфное) состояние с определенными физико-механическими и химическими свойствами. [c.90]

    Свойства фторорганических соединений. Фторуглероды имеют более низкую температуру кипения и более летучи, чем соответствующие алканы. Например, н-гептан имеет т. кип. 98 °С, перфторгептан 82 °С. Атомы фтора действуют стабилизующе на другие атомы галогена в молекуле. Например, в дифтордихлорметане хлор не гидролизуется. Фторуглероды негорючи, отличаются термической стойкостью (до 400 °С) и высокой химической инертностью к действию кислот, щелочей. Атомы фтора в перфторсоединениях создают вокруг атома углерода плотный барьер, защищающий углеродный скелет от воздействия других реагентов. [c.150]

    Выбор оптимальной рабочей температуры весьма важен, поскольку полиэфиры содержат летучие соединения и термически неустойчивы при температуре 200—250°. Кроме того, при взаимодействии с растворителями они могут претерпевать переэтерификацию. Колонки, заполненные таким веществом, можно использовать непрерывно в течение 2—3 месяцев при 200°, прежде чем произойдет ухудшение их свойств. Эффективность колонки составляет 200—300 теоретических тарелок на 30 см для свеженаполненной колонки. Однако со временем эффективность падает. [c.498]

    В предыдущих исследованиях было показано, что благородные газы, кроме известных ранее гидратов, дают соединения с фенолом и толуолом р]. При этом было установлено, что при образовании молекулярных соединений благородные газы имеют многочисленных аналогов среди летучих гидридов, а в случае гидратов также и среди веществ, молекулы которых составлены из многих атомов. Аналогия здесь, прежде всего, проявляется в сходстве условий образования и свойствах этих соединений и особенно в их изоморфизме. Для соединения сероводорода с фенолом по диаграммам плавкости иностранными учеными р] была установлена формула Нц5 2С Нг,0Н. Доказав изоморфное соосаждеиие благородных газов с соединением П 5 с фенолом, Б. А. Никитин р] вывел заключение о существовании аналогичных соединений благородных газов и приписал им такую же формулу. В дальнейшем он непосредственно получил соединения ксенона и криптона с фенолом [ ]. Однако термический анализ системы сероводород—фенол был проведен только по кривым ликвидуса и без учета количества сероводорода, оставшегося в газовой фазе. Применив специально разработанную методику для термического анализа систем, содержащих летучий компонент, Никитин, Ковальская и Пушлен-ков [ ] более точно определили диаграмму плавкости для этой системы и доказали, что соединению следует приписать формулу Но5 ЗСдИдОН. [c.224]

    Получены пленки на подложках из кремния (без и со слоем окисла), фарфора, корунда, молибдена и графита [221J. Если коэффициенты термического расширения пленки и подложки значительно различаются, то могут быть получены пленки толщиной лишь 10—80 мкм. При использовании в качестве подложек корунда и фарфора в пленках всегда наблюдалось определенное количество легирующей примеси р-типа за счет диффузии алюминия из подложки. Содержание углерода в микрокристаллическом кремнии не влияет на окисление, однако травление пленки происходит более или менее трудно в зависимости от количества углерода в форме карбида. При высоком содержании углерода для этой цели может быть успешно использован расплав солей, например смесь КОН—KNO i—KF. Легирование растущего кремния добавлением летучих соединений мышьяка или бора к газовой смеси не приводило к получению пленок с воспроизводимыми электрическими свойствами. Концентрация носителей в получаемых образцах была много меньше, чем в монокристаллических слоях, полученных в сравнимых условиях. Однако если эти пленки отжигать в азоте или кислороде, то концентрация носителей соответствует приблизительно ожидаемой из-за равномерного распределения по объему в процессе диффузионного отжига. Скорость диффузии бора из источника В203—Si02 значительно уменьшается с увеличением содержания карбида бора. Подвижность носителей в отожженных пленках была равна 10—50 см"1в-сек. В табл. 7-9 показаны типичные результаты для пленок толщиной 150 мкм, которые были легированы из паровой фазы с молярным отношением треххлористого фосфора к соединению кремния, равным 10 5. [c.233]

    Термическое разложение летучих металлоорганических соединений находит все более широкое применение для получения металлических, оксидных, карбидных, нитридных и подобных пленок и покрытий с разнообразными полезными свойствами термо- и коррозионнозащитными, полупроводниковыми, оптическими, сверхпроводящими, каталитическими, износостойкими и т. п. [220]. Подавляющая часть работ в этой области вьшолнена с использованием металлоорганических соединений легких элементов и й -переходных металлов. Имеются также результаты, которые свидетельствуют об исследованиях лантаноидов и актиноидов. [c.184]

    Продукты взаимодействия элементов подгруппы хрома с фосфором, мышьяком и сурьмой резко отличаются от галогенидов и халь-когенидов тем, что их формульный состав не отвечает правилам формальной валентности, т. е. фосфиды, арсениды и стибиды хрома и его аналогов принадлежат к классу аномально построенных дальтонидов, содержащих анион-анионные и катион-катионные связи. Наиболее характерны для фосфидов соединения состава ЭзР, ЭР и ЭРг- Образование моно- и дифосфидов вообще весьма характерно для переходных металлов. Для таких фосфидов при всем разнообразии их состава можно отметить общие закономерности, заключающиеся в том, что по мере увеличения относительного содержания фосфора понижаются температуры плавления, увеличивается склонность к термической диссоциации с отщеплением летучего компонента (фосфора), уменьшается ширина области гомогенности и при этом свойства меняются от металлических у фосфидов типа ЭзР и ЭР до полупроводниковых у высших фосфидов ЭР . [c.346]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]

    Несколько отличается от остальных водородных соединений группа так называемых полимерных гидридов. К ним относятся гидриды бериллия, магния, алюминия (ВеНг) , (MgH2)г, (А1Нз)1. Это твердые вещества, термически распадающиеся на элементы соответственно при 100, 300 и 100°С. Близки к ним по свойствам гидриды меди, серебра, цинка и кадмия, а также твердые гидриды фосфора (РН)г. Гидриды бора ВгНе и галлия Оа2Нв представляют собой летучие димеры, в обычных условиях газообразные или жидкие. [c.271]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    По сравнению с другими методами разделения дистилляция имеет лишь ограниченное применение в неорганическом анализе. Для операций разделения можно воспользоваться летучестью некоторых неорганических соединений (например, галогенидов металлов, Ru04, OSO4 и некоторых соединений неметаллов), однако лишь в редких случаях такие процессы разделения основаны яа летучих продуктах, получающихся с применением органических реагентов. Образование карбонилов металлов, алкоксидов, алкилов я металлооргаиических соединений протекает медленно и неполно лишь хелатЁг металлов, которые обладают достаточной летучестью и термической стабильностью, могут быть использованы для аналитичеоких разделений. Однако хелаты с такими свойствами больше применяются в хроматографии, чем для дистилляции. [c.188]

    Бензол СбНб слишком летуч (температура кипения 80,1° С), И о применении его в реакторе не может быть и речи. Конденсированные циклические соединения, такие, как нафталин и антрацен, имеющие в структуре молекулы два и более бензольных кольца, причем два атома углерода являются общими для двух колец, имеют меньшую термическую стойкость и не такие хорошие физические свойства, как дифенил и полифенилы, имеющие разделенные бензольные кольца. Соединения, [c.400]


Смотреть страницы где упоминается термин Термические свойства летучих соединений: [c.334]    [c.66]    [c.270]    [c.403]    [c.270]    [c.180]    [c.6]    [c.35]    [c.243]    [c.289]    [c.8]    [c.8]    [c.85]    [c.121]    [c.311]    [c.228]    [c.8]    [c.276]    [c.97]    [c.121]   
Смотреть главы в:

Квазиравновесная термогравиметрия в современной неорганической химии -> Термические свойства летучих соединений




ПОИСК







© 2025 chem21.info Реклама на сайте