Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обнаружение неорганическими реагентами

    ОБНАРУЖЕНИЕ НЕОРГАНИЧЕСКИМИ РЕАГЕНТАМИ [c.65]

    В зависимости от характера анализируемого материала различают анализ неорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с некоторыми особенностями органических соединений по сравнению с неорганическими. Часто первый этап анализа состоит в переведении пробы в раствор. При анализе неорганических материалов растворителем чаще всего служит вода или водные растворы кислот или щелочей. Полученный раствор содержит катионы и анионы подлежащих определению элементов. Для их обнаружения применяют реагенты, которые взаимодействуют с определяемыми ионами, как правило, очень быстро, причем в большинстве случаев реакции доходят до конца. При анализе органических соединений нередко необходимо провести предварительную минерализацию пробы, т. е. разрушить ее органическую часть прокаливанием или обработкой концентрированными кислотами. Нерастворимые в воде органические соединения иногда растворяют в органических растворителях реакции между органическими соединениями обычно протекают медленно и почти никогда не доходят до конца, причем они могут протекать по нескольким направлениям с образованием разнообразных продуктов реакции. Б анализе применяют и некоторые другие [c.13]


    Для обнаружения золота при помощи органических и неорганических реагентов используют дробные реакции, хотя число их и невелико. К выделению золота систематическим ходом анализа и последующему обнаружению прибегают редко. [c.64]

    В качестве матриц иногда используют неорганические соединения, в том числе соли — карбонаты кальция, бария, магния, сульфат бария. Например, на соли наносят тонкий порошок фуксина или метилового фиолетового для обнаружения свободной воды в углеводородах. Модифицирование неорганическими реагентами проводят преимущественно сорбцией или осаждением на сорбентах гидроксидов, оксидов или солей металлов. [c.216]

    Обнаружение никеля неорганическими реагентами [c.46]

    Методы обнаружения ионов можно разделить на химические и физические. Для химического обнаружения используют реагенты, применяемые в качественном неорганическом анализе. Разделенные ионы можно обнаружить с помощью универсальных реагентов, вступающих в характерные реакции с исследованными ионами для разделения индивидуальных ионов и подтверждения их наличия можно пользоваться избирательными, или специфическими, реагентами. Для обнаружения пригоден ряд реагентов, указанных в монографиях, посвященных качественному анализу методом БХ [36, 93, 124]. Особенно чувствительны органические реагенты. Предел обнаружения органическими реагентами составляет 0,1 мкг, если используется цветная реакция, и 0,01 мкг, если продукты реакции флуоресцируют. [c.143]

    Качественный анализ вольфрама очень слабо разработан. В основном используют осаждение малорастворимой вольфрамовой кислоты при действии на вольфраматы минеральных кислот вместе с вольфрамовой в этих условиях осаждается кремневая кислота. От последней вольфрам отделяют обработкой осадка аммиаком, а затем обнаруживают в фильтрате. Из неорганических реагентов чаще всего используют роданиды щелочных металлов и аммония в присутствии восстановителей [Ti(IH), Sn(II)], из органических — толуол-3,4-дитиол (дитиол). Вероятно, для обнаружения можно использовать реагенты, рекомендованные для фотометрического определения вольфрама они чувствительны и достаточно надежны, особенно после отделения вольфрама, например кислым гидролизом. Реагенты, рекомендованные для гравиметрического определения вольфрама, мало пригодны для его обнаружения, так как образуют нехарактерные осадки с вольфрамом. [c.47]


    Список реагентов, используемых для обнаружения неорганических ионов, приведен в приложении к гл. 3, стр. 102. [c.41]

    В часть вторую Качественный анализ введены новые микрокристаллоскопические реакции на катионы и анионы, более широко освещено применение органических реагентов для обнаружения неорганических ионов, уделено внимание распознаванию минеральных удобрений. [c.3]

Таблица 29. Обзоры, посвященные применению реагентов для обнаружения неорганических соединений в БХ и ТСХ Таблица 29. Обзоры, посвященные <a href="/info/824644">применению реагентов</a> для <a href="/info/157643">обнаружения неорганических</a> соединений в БХ и ТСХ
Таблица 30. Реагенты для обнаружения неорганических ионов после Таблица 30. Реагенты для <a href="/info/157643">обнаружения неорганических</a> ионов после
    Поскольку во многих случаях органические реагенты образуют устойчивые комплексы с ионами металлов, их -применяют преимущественно для обнаружения катионов. Для анионов известно небольшое число чувствительных органических реагентов, поэтому идентификацию анионов лучше проводить с помощью классических реакций С неорганическими веществами. [c.13]

    Качественный анализ. Качественное обнаружение катионов или анионов обычно проводят на бесцветных не набухающих или слабо набухающих неорганических ионитах, на фоне которых удобно наблюдать образование окрашенных зон. Если зоны определяемых ионов не окрашены, их проявляют с помощью реагентов, образующих окрашенные малорастворимые или комплексные соединения. Образование окрашенных соединений на колонке рекомендуется наблюдать сразу же после пропускания [c.190]

    Для урана такими реакциями являются прежде всего цветные с неорганическими и органическими реагентами и люминесцентные. В отсутствие прочих радиоактивных элементов уран может быть быстро определен по радиоактивности [72, 225, 635, 655]. Ультрамалые количества урана можно определить методом микрорадиографии по количеству распадов, фиксируемых специальными толстослойными фотопластинками 435, 807, 808]. Реже для обнаружения урана используют некоторые другие методы полярографические [944], спектральные [167,442], метод нейтронного активационного анализа [724, 924]. Эти достаточно сложные инструментальные методы в основном применяются для количественного определения урана. Они подробно описываются в соответствующих разделах книги. [c.34]

    Для обнаружения урана наиболее часто используют его цветные реакции с неорганическими или органическими реагентами. [c.35]

    В книге описан синтез большого числа органических реагентов различных классов (кислород-, серу,- селен-, фосфор-, азотсодержащих и др.), предложенных в последние 10—15 лет для обнаружения и количественного определения неорганических ионов. Наряду с реагентами, которые достаточно подробно изучены и входят в практику аналитических лабораторий, даны также методики синтеза ряда мало изученных реагентов, которые потенциально могуг представлять несомненный интерес для неорганического анализа. Приводятся методики синтеза органических реагентов, которые не выпускаются промышленностью, по крайней мере в достаточном количестве и надлежащего качества, и получение которых не описано в руководствах по органическому синтезу. Методики в большинстве случаев проверены в нашей лаборатории в течение 15 лет. В некоторые из них внесены изменения, повышающие выход или чистоту препаратов. [c.5]

    Электрофорез особенно успешно применяется для обнаружения моносахаридов, в молекуле которых имеются основные (как в аминосахарах) или кислые (как в альдоновых, уроновых, сахарных кислотах, фосфатах и сульфатах сахаров) группировки (см., например, ). В тех случаях, когда необходимо разделить нейтральные моносахариды, используют их способность образовывать отрицательно заряженные комплексы с борной кислотой или ее солями , с молибдатами , вольфраматами, германа-тами и рядом других неорганических анионов разные анионы предъявляют часто различные требования к стереохимии моносахарида, необходимой для образования устойчивых комплексов. Естественно поэтому, что выбор комплексообразователя и условий проведения электрофореза, в первую очередь pH растворов, весьма существенно влияет на результат разделения (см. ). Для обнаружения зон веществ на электрофореграммах применяется большинство реагентов, используемых при хроматографии на бумаге. [c.411]

    Органических реагентов в сотни раз больше, чем неорганических. Это позволяет выбрать лучшие из них. Чрезвычайно широко органические реагенты используют в методах разделения ионов, обнаружения и концентрирования. Их применяют в капельном анализе, колориметрическом, титриметрическом и гравиметрическом анализах, в бумажной и тонкослойной хроматографии и используют в качестве индикаторов. Многие органические соединения дают с ионами металлов малорастворимые осадки, ярко окрашенные и слабо ионизирующие. [c.55]


    Такая двоякая роль подвижной фазы затрудняет ее выбор и часто заставляет определять условия разделения экспериментальным путем. В монографиях по бумажной хроматографии приводятся таблицы, облегчающие выбор соответствующих систем. В этих таблицах даются значения Rf для большого числа неорганических и органических веществ при использовании нескольких различных типов подвижной фазы. Кроме состава подвижной фазы в таблицах указаны типы бумаги, методики хроматографирования и реагенты, необходимые для обнаружения выделенных компонентов. [c.521]

    В природе встречаются все типы стабильных ядер. Их относительная распространенность может изменяться в широких пределах — в 10 раз. Определение распространенностей изотопов было проведено рядом авторов, и полученные результаты использовались для объяснения процесса образования элементов [16, 1968] подобные измерения большей частью осуществлялись в области спектро-аналитических астрономических наблюдений и неорганической химии. Чувствительность масс-спектрометрического анализа образцов, приготовленных в удобной для изучения форме, высока, однако необходимо признать, что этот метод не является во всех случаях лучшим или наиболее чувствительным. Часто обычные химические методы оказываются более приемлемыми. Например, наличие некоторых химических соединений в воздухе легче устанавливается при пропускании больших количеств образца через соответствующий реагент при этом нет необходимости проводить обогащение для повышения чувствительности обнаружения примесей. Радиоактивные изотопы с гораздо большей чувствительностью обнаруживаются путем регистрации излучения, чем методом масс-спектрометрии. Так, например, в мл тяжелой воды, полученной из 13 ООО т поверхностных вод Норвегии, была определена молярная доля трития, равная 3,2-10 , что позволило установить мольную долю трития в водороде этих вод, равную 10 [797]. Масс-спектро-метрический метод не обладает подобной чувствительностью. Однако преимущества его в определении относительной распространенности изотопов элементов неоспоримы. В настоящей главе будут рассмотрены подобные измерения, а также измерения относительных количеств различных положительных осколочных ионов в масс-спектрах химических соединений. Применение метода анализа изотопного состава рассмотрено в конце настоящей главы, применение в химическом анализе обсуждено в гл. 8. [c.70]

    В настоящее время одним из важнейших и стремительно развивающихся методов аналитической химии, опирающимся на успехи в области органического синтеза, является применение органических реагентов в неорганическом анализе. Этой проблеме посвящен ряд монографий отечественных и зарубежных авторов (большинство из последних имеется в русском переводе). Следует, однако, отметить, что во всех опубликованных ранее книгах внимание уделялось либо изложению главным образом теоретических основ применения органических реагентов в анализе, либо описанию преимущественно свойств самих органических реагентов и практическим рекомендациям по конкретному использованию их для обнаружения, разделения и определения тех или иных соединений. [c.5]

    Особенностью ТСХ является возможность последовательного использования нескольких реагентов для детектирования разных классов соединений или соединений с различными функциональными группами. Наилучщие результаты достигаются в случае использования специфических реагентов, применяемых для обнаружения определенных классов органических или неорганических соединений. Рассмотрим несколько конкретных примеров такого рода. [c.189]

    Химики должны неустанно и - как можно более полно исследовать свойства и реакции различных веществ. В ходе тысяч дипломных, диссертационных и других исследовательских работ изучается поведение элементов и соединений по отношению к различным реагентам. Реакции обнаружения почти всегда являются результатом длинного ряда опытов, в котором только один приносит счастливый результат. Полученные данные собраны в изданном на немецком языке Справочнике по неорганической химии Гме-лина. Доказательством разнообразия исследований служит тот факт, что такому малоизвестному элементу, как германий, посвящены в этом справочнике два тома. Первый, изданный в 1931 г., содержит 62 страницы убористого шрифта, а второй, дополнительный том, появившийся в 1958 г., — уже 576 страниц Трудно представить, сколько будет опубликовано материала о германии в 2000 г. [c.90]

    Исходя из возможности использования реакций органических соединений с ионами металлов в растворах можно на основе выполнения синтеза органического реагента разработать специфическую реакцию на то органическое соединение, которое используется для этого синтеза. Иными словами, подлежащее исследованию соединение используют для синтеза органического реагента, который затем может быть идентифицирован по его взан.моде -ствию с неорганическими ионами. Таким образом, вновь ясно видна связь между этими реакциями и поисками органических реагентов для неорганических ионов. Однако использование препаративных методов в анализе не должно ограничиваться синтезом органических реагентов и их последующим обнаружением при помощи неорганических ионов. Прием является более общим. Для аналитических целей всегда можно использовать так] е синтезы, при проведении которых получаемое новое вещество может быть идентифицировано неорганическим [или органическим реагентом, или его можно характеризовать по окраске, флуоресценции, растворимости и т. п. Более того, нужно учитывать, что обнаружение характерного побочного продукта реакции может в некоторых случаях служить прямым или косвенным доказательством наличия определенного компонента органического синтеза. В таких случаях нужно знать, какая стехиометрическая реакция лежит в основе синтеза. Выход продукта в этих случаях не столь важен. Важно, что при этом выявляются интересные обстоятель- [c.25]

    Обнаружение функциональных групп в органических соединениях проводится примерно с той же целью, что и обнаружение отдельных катионов или анионов в неорганических соединениях. В литературе по неорганическому анализу приведено много экспериментальных данных о вредном влиянии ряда примесей на аналитические реакции в органическом анализе таких наблюдений пока очень мало. Это обстоятельство следует учитывать при применении различных реакций, описанных в этой главе. При обнаружении функциональных групп в органических соединениях нужно учитывать не только взаимодействие применяемых реагентов с [c.204]

    Другое обстоятельство, которому часто уделяют слишком мало внимания, заключается в том, что на реакционную способность некоторых групп в органических соединениях иногда сильно влияет остальная часть молекулы или содержащиеся в ней группы. Это влияние может вызвать существенное изменение скорости протекания реакции, потерю реакционной способности, изменить растворимость, кислотный или основной характер, а также окраску и флуоресценцию продуктов реакции. Очевидно, что такие особенности протекания реакций при обнаружении функциональных групп могут быть использованы для диагностики индивидуальных соединеиий. В поисках специфических и избирательных органических реагентов для неорганического анализа особое внимание уделялось в последнее время активности определенных солеобразующих групп и влиянию, которое оказывает на эту активность остальная часть молекулы и реакционная среда. Возможно, что открытия , сделанные в этой области, будут также применимы и к химическим методам органического анализа при обнаружении функциональных групп и индивидуальных соединений. Такая возможность уже обсуждалась в главе 1 подтверждением ее служат многочисленные примеры, приведенные в различных местах настоящей книги. [c.428]

    Из неорганических реагентов применяют соединения ртути(1), Н2О2, соль Мора, Sn lj, которые восстанавливают золото (I, III) до элементного. Иногда для обнаружения золота получают перлы сплавлением образца с метафосфатом натрия. Используют реакции образования интенсивно окрашенных продуктов окисления реагентов [ферроцианид в присутствии нитробензола, Мп(П) в среде пирофосфата]. Многочисленны методы обнаружения ионов Au(III), основанные на окислении органических реагентов до интенсивно окрашенных продуктов. Эти реакции высокочувствительны, однако малоселективны, так как мешают все сильные окислители. Кроме того, очень часто мешают анионы, образующие с ионами Au(III) комплексные анионы и тем самым снижающие окислительно-восстановительный потенциал Au(IlI)/Au(I) или Au(III)/Au(0). [c.64]

    Хроматографирование ведут на полосках хроматографической бумаги шириной 2 см в цилиндрических сосудах с притертыми крышками, на которых имеются крючки для подвешивания хроматохрамм. Подвижную фазу наливают на дно цилиндра. Пробу наносят 2-3 раза, каждый раз высушивая пятно. Положение пятна отмечают карандашом. Максимальная длина хроматограмм — 30 см. Минимальная высота поднятия фронта растворителя — 10 см. Пятно пробы не должно погружаться в растворитель. Перед проявлением хроматограмму высушивают. По величинам Луи измеренному пути, который прошел фронт растворителя, рассчитывают положение зон каждого компонента смеси. Для обнаружения ионов хроматограмму обрабатывают растворами органических и неорганических реагентов проявителей в местах ожидаемого нахождения каждого компонента. [c.146]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Аналитические реагенты традиционно были неорганическими и органическими (экстракты дубильных орешков или фиалок, щавелевая кислота). Во второй половине ХЕХ в. число органических соединений, используемых для анализа, увеличивается. Предложен (1879) реактив Грисса на нитрит-ион (смесь а-нафтиламина и сульфаниловой кислоты дает с нитритом красное окрашивание). М. А. Ильинский (1885) использовал 1-нитрозо-2-нафтол в качестве реагента на кобальт. Большое значение имели работы Л. А. Чугаева, применившего диметилглиоксим для обнаружения и определения никеля. [c.18]

    ТСХ). В некоторых применениях хроматографии в неорганическом анализе успешно нспользуют полярную подвижную фазу, в качестве которой может служить анализируемый водный раствор или водный элюент. В этом случае менее полярная жидкость, являющаяся неподвижной фазой, удерживается а неполярном (гидрофобном) носителе. Такой процесс типичен для хроматографии с обращенной фазой (известной также под названием экстракционной хроматографии). В распределительной хроматографии органический реагент может использоваться двумя различными способами либо для превращения разделяемых ионов в комплексные соединения, которые затем распределяются между двумя фазами, либо для обнаружения или определения in situ, т. е. непосредственно на бумажной или тонкослойной хроматограмме. Выбор реагента для inepBOiro из этих случаев опирается на соображения, изложенные в разделе, посвященном экстракции, а для второго случая он основывается яа тех же принципах, которые используются при проведении цветной или флуоресцентной пробы и (или) определения. [c.235]

    Впервые органические соединения в неорганическом анализе были применены М. А. ИльинскихМ, предложившим в 1884 г. а-ни-трозо-р-нафтол для обнаружения кобальта. Однако широкое распространение органические соединения получили лишь после исследований П. А. Чугаева. В 1905 г. им был предложен органический реагент диметилглиоксим, являющийся и сейчас лучшим реагентом на N1 +. [c.287]


Смотреть страницы где упоминается термин Обнаружение неорганическими реагентами: [c.27]    [c.25]    [c.16]    [c.298]    [c.269]    [c.165]    [c.2]    [c.71]    [c.71]    [c.306]    [c.63]    [c.687]    [c.44]    [c.8]   
Смотреть главы в:

Аналитическая химия золота -> Обнаружение неорганическими реагентами




ПОИСК





Смотрите так же термины и статьи:

Неорганические реагенты



© 2025 chem21.info Реклама на сайте