Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа полярограмм

    Таким образом, объединение двух точек зрения на природу полярограмм суспензий твердых нерастворимых веществ (адсорбентов) представляется разумным приемом, который облегчит внедрение метода полярографии в теорию и практику адсорбционных исследований. [c.39]

    Получить от преподавателя контрольную задачу (смесь двухтрех солей металлов), приготовить раствор для полярографирования по п. 2 и снять полярограмму. Определить количество и природу деполяризаторов в растворе, используя табличные значения потенциалов Е 12 и метод добавок. Сдать результат преподавателю. [c.169]


    Из полученной полярограммы определить графически методом (см. рис. 47) и по показаниям прибора (в случае осциллографической полярографии) высоты и потенциалы полуволн (пиков). Сравнить полученные данные с табличными значениями и расшифровать спектр, т. е. определить количество и природу деполяризаторов в исследуемом растворе. [c.170]

    Полярографический метод, предложенный в 1922 г. чешским ученым Я. Гейровским, является одним нз наиболее со вершенных методов исследования и химического анализа. Полярографический анализ заключается в определении природы и концентрации вещества, вступающего в электрохимическую реакцию, по вольтамперным кривым или полярограммам. В практике полярографии широко используется ртутный капельный электрод с постоянно обновляющейся поверхностью, для которого поляро-грамму можно получить в координатах потенциал — сила тока (рис. 177). [c.504]

    Таким образом, на экране осциллографа будет зафиксирована зависимость d/ldE от Е, т. е. фактически дифференциальная полярограмма. Следовательно, проведя небольшое видоизменение схемы осциллографического полярографа, можно сохранить все преимущества осциллографической полярографии и одновременно получить кривые, по которым быстро определяются природа и концентрация восстанавливающихся веществ. Хорошее дробное дифференцирование позволяет осуществить / ,С-кабель, изготовленный из 700—1000 элементов. Для дробного дифференцирования можно использовать также обратимые электрохимические системы, например систему Р1/(12+К1). Для этого изготовляют небольшую ампулу, в которую впаивают два платиновых электрода и заливают раствор 1з+К1 определенной концентрации. Такую ячейку включают в схему вместо Я,С-кабеля. Так как в данной [c.210]

    Как следует из соотношения (37.21), потенциал полуволны зависит только от природы редокс-системы. Высота полярографической волны в соответствии с (37.22) определяется концентрацией окислителя в растворе. Поэтому полярографический метод можно использовать для анализа раствора. Если в растворе имеется несколько веществ, которые могут восстанавливаться, то полярограмма представляет собой многоступенчатую кривую (рис. 97), каждая из волн которой отвечает определенному веществу. Таким образом, полярографический метод позволяет анализировать многокомпонентные системы. [c.193]

    А [з1=м2 [Ь]=м /с Ы=В/с [с"]=моль/л. При определении природы реагирующего вещества необходимо учитывать, что потенциал максимума осциллографической полярограммы не совпадает с потенциалом полуволны, а сдвинут относительно него в отрицательную сторону для процесса электровосстановления на Д  [c.234]


    Полярограф ПА-3 дает возможность снимать также дифференциальные полярограммы, показывающие зависимости производной тока по напрял<ению от напряжения (рис. 48). Высота пиков пропорциональна концентрации вещества, расстояние их от начала координат характеризует природу вещества. [c.158]

    Как видно нз уравнения (69), ф, , зависит только от природы разряжающихся ионов и от концентрации и состава фона. Его величина определяется по полярограмме нз условия 1= /2 д. [c.34]

    На практике чаще всего используется метод дифференциальной (производной) полярографии. Дифференциальная кривая строится в координатах Е - Л1/ЛЕ и представляется в виде пика. Положение вершины пика и его высота характериз>тот соответственно природу и концентрацию электроактивного вещества. Метод дифференциальн(ж полярографии при сравнимой чувствительности обладает по сравнению с прямой полярографией на порядок большей разрешающей способностью. Если полярограмма имеет вид зависимости второй производной тока от потенциала электрода, она имеет вид узких пиков, и разрешающая способность и чувствительность еще выше. [c.313]

    При сравнительном изучении восстановления ионов индия на капельном ртутном катоде было найдено [140, 141], что на характер полярографической кривой влияют природа аниона индифферентного электролита, поверхностно-активные вещества и температура. Деформирующиеся анионы (Т", Вг", ЗСН", СНдСОО", С1", (СОО)а ) в значительной степени активируют выделение индия. Предельный (диффузионный) ток для индия, в одинаковых условиях, уменьшается с уменьшением деформируемости аниона индифферентного электролита (от к (СОО)а ). Волна индия выражена хорошо. В среде недеформирующихся анионов (СЮ7, СЮ , N0 ", ЗО и Г") ток лимитируется скоростью химических реакций около электрода это следует из значительного возрастания силы тока при повышении температуры (рис. 11 и 12) и из характера зависимости силы тока от высоты резервуара. В присутствии недеформирующихся анионов при нормальной температуре часть общего предельного тока хлорида или ацетата индия настолько смещается к более отрицательным потенциалам, что на полярограммах появляются две волны. Первая, более низкая волна, находится при потенциале между —500 и —600 мв, а вторая, растянутая волна, при потенциале от —1000 до —1100 мв (относительно нормального каломельного электрода). Суммарная вы- [c.182]

    Полнота протекания каждой реакции зависит от природы полярографического фона. На практике электровосстановление мышьяка еще больше усложняется в связи с тем, что на полярографических волнах могут появляться двойные максимумы [865] и совершенно неожиданное влияние на форму поляризационных кривых может оказывать pH раствора [902]. Восстановление мышьяка(П1) до элементного состояния сопровождается адсорбцией его на поверхности ртутного капающего электрода, что может приводить к каталитическому выделению водорода, который вызывает на поляро-граммах дополнительные максимумы. Механизм электровосстановления мышьяка и существование его различных валентных форм в кислых растворах выяснен сравнительно недавно [645]. По данным Арнольда и Джонсона [502], в общем случае наиболее сложные полярограммы мышьяка могут наблюдаться в кислых средах, где мышьяк не образует комплексных ионов. Это положение согласуется с данными Крюковой [200, 201], наблюдавшей весьма сложные кривые восстановления мышьяка в большинстве растворов минеральных кислот различной концентрации. [c.78]

    Для ионов тория (IV) характерно одно- или двухэлектронное необратимое катодное восстановление [681, 684, 1180, 1039, 990, 878]. Согласно полярографическим данным восстановление тория (IV), подобно цирконию и гафнию, часто сопровождается выделением водорода. Исследованы перхлоратные, нитратные и хлорид-ные растворы тория. На полярограммах наблюдается от одной до трех волн, природа которых в большинстве случаев не установлена. Кинетика катодного процесса рассчитана исходя из четырехэлектронного катодного процесса. При таком предположении результаты исследований указывают на квазиобратимый электродный процесс. Значения коэффициентов диффузии диффундирующих ионов тория, рассчитанные из полярографических и потенциометрических данных в ДМСО, разнятся на два порядка. Катодное восстановление тория из водных растворов сводится практически к выделению водорода. [c.91]

    Характер восстановления ионов циркония и гафния по данным полярографии очень похож [1179, 893, 1102, 1068, 773, 1039]. В результате плохой растворимости в органических растворителях и трудностей получения в безводном состоянии перхлоратов этих металлов исследовались в основном растворы тетрахлоридов. В зависимости от природы растворителя, фона и концентрация восстанавливающихся частиц происходит ступенчатое восстановление или восстановление непосредственно до металла. Как и в случае титана, нередки обрывы цепи восстановления. Часто хорошо выраженные волны на полярограммах растворов тетрахлоридов циркония и гафния относятся к восстановлению водорода из сольватного окружения ионов этих металлов. Этот процесс особенно характерен для спиртовых растворов [773] и смешанных водно-органических растворов [138, 1039, 1068]. Как правило, электродные процессы носят диффузионный характер и, за небольшим исключением, например обратимые ступени Zr(IV) Zr(III) и Hf(IV) Hf(III) в ДМСО [1101] необратимы. Ступенчатость восстановления Me(V)->Me(I I)-i-Me(II) Me(0) более характерна для циркония. Кинетика катодного восстановления этих металлов не изучена. [c.94]


    О природе образуюш ихся перекисей дают представление образцы полярограмм, приведенные на рис. 57. Полярограммы показывают наличие двух соединений, восстанавливаюш,ихся при —0,2 и —1,0 в. При —1,45 в восстанавливаются ионы водорода. [c.172]

    Соединение с потенциалом восстановления —0,2 в авторы считают ал-килгидроперекисью, соединение же, восстанавливающееся при —1,0 в остается неизвестным. Для окончательного доказательства перекисной природы этих двух соединений авторы поставили следующий опыт. После снятия в кислой среде полярограммы продуктов, полученных во [c.172]

    Важная разновидность вольтамперометрии с линейной разверткой— циклическая вольтамперометрия с треугольной раз-верткой потенциала. Если в первом случае электрод поляри-зует единичным импульсом линейно изменяющегося потенциала, то во втором на электрод подают серию импульсов поляриза ции, линейно изменяющейся сначала в катодном, а затем в анодном направлении. График изменения потенциала во вре мени имеет вид равнобедренного треугольника и потенциал электрода как бы качается между заданными начальным и конечным значениями. В случае обратимой электродной реаК цин, вещество, восстановившееся в ходе катодной поляризации, в силу быстроты изменения потенциала не успевает за счет диффузионного переноса покинуть приэлектродиый слой и обратно окисляется в ходе второй части цикла — анодной поляризации электрода. Полярограмма приобретает вид двух равных пиков токов разной полярности (см. рис. 5.16), сдвинутых относительно друг друга на 57 мВ. Если продукт реакции иестабилен, то анодный ток равен нулю. Это является хорошим методом выяснения природы электродной реакции. [c.289]

    Важную информацию о механизме электрохимических реакций можно получить с помощью полярографического метода. Изучение полярограмм, т. е. кривых I — Е (сила тока — напряжение), полученных с использованием в ка-чесгве рабочего ртутного (капельного) электрода, дает возможность провести качественный и количественный анализ электролита, установить природу разряжающихся ионов, число электронов, участвующих в электродной ре-ации, и т. п, В ряде случаев в полярографии используются твердые электроды. Особенности и теоретические основы ЭТ010 метода широко освещены в специальной литературе. [c.139]

    Роль гомогенных химических реакций в электродных процессах была впервые выяснена в ходе полярографических измерений на капельном ртутном электроде на примере процессов, скорость которых определяется предшествующей реакцией рекомбинации анионов кислот с ионами водорода (Р. Брдичка, К. Визнер). При достаточно низких значениях pH на полярограммах электровосстановления пи-ровиноградной и фенилглиоксалевой кислот на ртути имеется лишь одна волна, отвечающая электровосстановлению недиссоциированных молекул кислоты (рис. 165). При увеличении pH высота волны уменьшается и одновременно появляется при более отрицательных потенциалах волна восстановления анионов кислоты. Высота первой волны оказывается ниже, чем рассчитанная по уравнению Ильковича, исходя из соответствующей концентрации недиссоциированных молекул кислоты в растворе. Кроме того, ток этой волны не зависит от высоты ртутного столба кне, тогда как величина предельного диффузионного тока пропорциональна / /lнg. Наконец, ток первой волны резко возрастает при увеличении температуры, так что энергия активации процесса, соответствующего первой волне, оказывается значительно выше, чем энергия активации процесса диффузии. Все эти факты указывают на то, что ток первой волны имеет кинетическую природу, а именно, обусловлен медленным протеканием реакции про- [c.305]

    На полярографических кривых часто в узкой области потенциалов появляются аномалии— полярографические максимумы из-за резкого возрастания тока. Их следует ликвидировать, повышая концентрацию фона или прибавляя органические поверхностноактивные вещества (желатин, агар-агар, столярный клей и др.). Чувствительность и точность полярографии увеличивают анализом автоматически записанных дифференциальных кривых (dlldE) =1(Е)т или построенных по опытным данным кривых (AIIAE) =f E)r (см. рис. 41, б). Полярограмма, полученная на ос-циллографическом полярографе, называется осциллографической. Количественной характеристикой вещества является на ней величина мгновенного тока, соответствующего максимуму кривой Лпах-Качественной характеристикой служит потенциал Ej при котором этот максимум достигается. Он совпадает с потенциалом полуволны (рис. 41, а), характерным для данного процесса и зависящем от природы вещества и среды. Значение /а зависит от температуры. При изменении температуры на 1° Id изменяется на 1,7%. Полярографический анализ проводят с термостатированными растворами. [c.206]

    ОТ природы электроактивного вещества на данном полярографическом фоне и не зависит от его концентрации. При качественном анализе найденные значения сравниваются с уже известными значениями для разных веществ. Если в растворе присутствует несколько способных восстанавливаться веществ, то каждое из ньх дает свою волну и со своим ф1/2. Полярограмма имеет вид ступенчатой кривой. Количественный полярографический анализ основан на измерении высот волн, которые отвечают предельным диффузионным токам БОСС ановления. [c.212]

    Восстановление органических веи1еств на РКЭ имеет некоторые особенности. Восстановлению подвергаются как анионы кислот и катионы оснований, так и нейтральные молекулы. Восстановление осуществляется за счет присутствия в них тех или других функциональных групп. Возможность восстановления определяется не только природой функциональной группы, но и расположением ее в молекуле вещества. Многие органические вещества дают на полярограммах по нескольку волн, обусловленных или ступенчатым восстановлением одной функциональной группы, или восстановлением нескольких функциональных групп. Потенциалы полуволн в большой степени зависят от кислотности среды, что связано с участием ионов Н+ [c.214]

    Полярографический метод анализа был предложен в 1922 г. чешским ученым Ярославом Гейровским, который установил, что концентрация и природа восстанавливающихся или окисляющихся на ртутном капельном электроде веществ могут быть определены по кривым потенциал — плотность тока, т. е. по полярограммам, полученным с помощью двух электродов, один из которых очень малого размера (ртутная капля) и подвержев весьма сильной поляризации.  [c.284]

    Практически полярограмма [кривай / = /(ф)] имеет вид, показанный 1на рис. 102. Зигзагообразность ее объясняется природой капельного электрода, т. е. изменением плотности тока за время жизни одной капли. Природа присутствующих ионов определяется по потенциалам полуволн, а по предельным токам (/пр) находят их концентрацию. [c.292]

    Электроды сравнения. Селлерс и Леонард [1] использовали стационарный ртутный электрод в растворах БТЭА. Электрод оставался стабильным, а его показания - воспроизводимыми после снятия одной или двух полярограмм. Природа анодной реакции, по-видимому, не исследовалась. По данным Кнехта и Кольтгоффа [2], электрод Ag/Ag в виде системы Ag/Ag l (нас.), Na l (нас.), СПзСОКПМе ведет себя стабильно и воспроизводимо. Хлористый натрий, вероятно, вводился для обеспечения постоянства концентрации ионов хлора и стабильности потенциала, хотя авторы этот вопрос не обсуждали. Был использован также водный ПКЭ с солевым мостом из КС1 и агар-агара. [c.19]

    Полярографические характеристики некоторых фосфониевых солей приведены в табл. 12.3. Большое число реакций восстановления солей фосфония в полярографических условиях описано в работах [30—39]. К приведенным в этих работах значениям потенциалов полуволн следует относиться с осторожностью поскольку полярограммы получены в различных условиях. В большинстве случаев восстановление протекает необратимо и потенциалы полуволн зависят от концентрации деполяризатора, температуры, периода капаиня, высоты ртутного столба, а также природы и концентрации вещества, подавляющего полярографический максимум. [c.392]

    Полярографическое исследование о-крезолфталексона и ти-молфталексона в присутствии легких и тяжелых лантаноидов выявило различия в полярограммах в зависимости от природы комплексона и лантаноида [456, 457]. На полярограммах о-крезолфталексона в присутствии легких лантаноидов имеется дополнительная волна по сравнению с полярограммой в присутствии тяжелых лантаноидов. Это предложено использовать для определения легких лантаноидов в присутствии тяжелых [456]. Полярограммы тнмолфталексона в присутствии легких и тяжелых лантаноидов идентичны, в обоих случаях высота полярографической волны восстановления комплексона уменьшается пропорционально концентрации лантаноидов, что позволяет определять последние [457]. [c.257]

    Особенно много внимания уделено изучению хелатов металлов триады железа. Механизм их электровосстановления в неводных растворах определяется в первую очередь природой центрального атома. Так, полярографическое исследование восстановления ди-тиокарбаминатов различных металлов на Hg-элeктpoдe в ДМФ показало, что хелаты по своему электрохимическому поведению делятся на две группы. Полярограммы, относящиеся к комплексам Ре +, Со , N1 +, СгЗ+, Мп +, содержат п ступеней, соответствующих последовательному переносу п-электронов. Продуктом конечной необратимой стадии является металл на поверхности ртути. Хелаты металлов с заполненными -оболочками (2п , (1 +, 8п2+, Hg2+, РЬ + и т. д.) ведут себя иначе. Для комплексов данных металлов на полярограммах наблюдается одна волна, соответствующая восстановлению центрального иона до металла, разряд в большинстве случаев близок к обратимому. Работы по изучению электрохимического поведения хелатов переходных металлов имеют практическое значение. Они позволяют решать вопросы электрокатализа, гальваностегии, электросинтеза и электроанали-тического определения металлов [68, 64, 65]. [c.99]


Смотреть страницы где упоминается термин Природа полярограмм: [c.445]    [c.206]    [c.644]    [c.504]    [c.375]    [c.299]    [c.504]    [c.209]    [c.222]    [c.209]    [c.107]    [c.209]    [c.90]    [c.453]    [c.343]    [c.346]   
Смотреть главы в:

Химическое разделение и измерение теория и практика аналитической химии -> Природа полярограмм




ПОИСК





Смотрите так же термины и статьи:

Полярограмма



© 2025 chem21.info Реклама на сайте