Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ стереорегулярности

    К основным областям использования пиролитической газовой хроматографии относятся качественная идентификация полимеров путем сравнения пирограмм и масс-спектров исследуемых и известных полимеров, определение стереорегулярности полимеров, количественный анализ сополимеров и их структур, т. е. определение различий между статистическими и блок-сополимерами установление отличий полимерных смесей от истинных сополимеров, изучение термостойкости и деструкции полимеров, кинетики деструкции их, в том числе и термоокислительной деструкции, оценка остаточных количеств мономеров, растворителя, добавок и сорбированной воды в полимерах, идентификация растворителей, содержащихся в клеях и растворах покрытий, изучение процесса сшивания в полимерах. [c.200]


    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    Анализ полимеров по сравнению с анализом обычных низкомолекулярных органических и неорганических веществ имеет свою специфику, обусловленную главным образом большим размером макромолекул, а также неоднородностью полимеров по молекулярным массам и особенностью строения макромолекул (разветвленностью, неоднородностью расположения мономерных звеньев в цепи, стереорегулярностью и др.)  [c.10]

    Возможность более простой регистрации, когда не полностью стереорегулярный полимер получается в кристаллической форме непосредственно в ходе его приготовления, определяется конкретными условиями полимеризации. Еще задолго до детальных исследований процессов полимеризации, приводящих к образованию стереорегулярных полимеров, было известно, что -некоторые полимеры (например, поливинилхлорид, полиакрилонитрил, политрифторхлорэтилен и поливиниловый спирт) получаются обычно сразу в кристаллической форме, несмотря на больщую вероятность стереохимических нерегулярностей. Нередко в подобных случаях рентгеноструктурный анализ не подтверждает с полной определенностью наличие развитой кристалличности. Однако особенно для поливинилхлорида [46, 47] и полиакрилонитрила [48], анализ свойств этих полимеров в растворе и механических свойств дал явные подтверждения их кристалличности. Последующее получение указанных полимеров новыми методами, обеспечивающими повыщенную регулярность цепей, также подтвердило эти наблюдения [36, 49]. [c.111]


    Полиакрилонитрил — частично кристаллический полимер, что приводит к предположению о высокой степени его стереорегулярности. Действительно, это утверждалось в ряде работ на основании анализа ИК-спектров [20, 21], хотя другие исследования методом ИК-спектроскопии [22] привели к выводу, что полиакрилонитрил имеет почти нерегулярное строение (в согласии с данными ЯМР —см. разд. 4.4). Различия в способности к кристаллизации [23, 24] и размерах цепи в растворе [25] в зависимости от температуры полимеризации заставили высказать предположение о большей синдиотактической регулярности полимеров, полученных при низких температурах. Этот вывод аналогичен рассмотренному в предыдущем разделе для поливинилхлорида, но еще менее обоснован экспериментально. Спектры р-метиленовых протонов поли- [c.162]

    Масс-спектрометрия в полимерной химии используется для изучения стереорегулярности полимеров путем термического разложения макромолекул и анализа выделяющихся газов исследования термической деструкции полимеров (пиролиза) путем анализа выделяющихся газов (разд. 34.14) определения констант газопроницаемости. [c.374]

    Действительная схема стереоспецифич. полимеризации а-окисей более сложна, и ее развитие во многом связано с разработкой количественных методов анализа стереорегулярности полимеров этого типа. [c.208]

    Результаты количественного анализа стереорегулярных полибутадиенов [c.60]

    Колебательный спектр бесконечно длинной спиральной молекулы был проанализирован при исследованиях натуральных и синтетических полипептидов [663]. При этОхМ рассматривали модель спиральной цепи, в которой группы атомов объединяются в звенья сильными связями, а контакт между звеньями осуществляется за счет слабых связей. Установлена зависимость между углом закручивания спирали и расщеплением частот, относящихся к атомам, связанным сильной связью. Более подробно эта проблема изучена в работе [1169]. На примере изотактического полипропилена было показано [991], что все полосы спиральной конформации должны быть поляризованы. Слабый дихроизм или его отсутствие является следствием перекрывания полос, относящихся к различным типам колебаний. Подобный подход к анализу стереорегулярности позволяет из спиральной симметрии вывести определенные правила отбора. Взаимодействие между колебаниями групп, относящих ся к соседним звеньям и происходящих с постоянной разностью фаз, вызывает расщепление полос, разрещенных правилами отбора, на две компоненты, поляризованные перпендикулярно относительно друг друга (см. гл. 3). [c.142]

    На рис. 21 изображены пространственные конфигурации различных стереорегулярных цепей, которые были исследованы с помощью рентгеноструктурного анализа твердых кристаллических полимеров (вещества с регулярными молекулами отлично кристаллизуются). [c.75]

    Перейдем к рассмотрению параметров спиралей стереорегулярных полимеров. Мы упоминали ранее следующие величины с — период идентичности, т — число витков, а Ь, — число мономерных единиц в периоде. Эти параметры получаются нз анализа рентгенограмм. Удобно еще ввести параметр К = п1т — число мономерных единиц в одном витке. Теперь для общего случая цепи типа (—М1—М2—...—Мр—) мы будем иметь дело со следующим набором спиральных параметров  [c.17]

    Конечно, принцип плотной упаковки можно рассматривать как геометрическое выражение стремления системы частиц к минимуму свободной энергии. Вообще говоря, плотная упаковка может осуществляться несколькими различными способами, а на вопрос о том, какой из способов будет наиболее выгодным, могут дать ответ только расчеты с потенциальными функциями. Однако для стереорегулярных полимеров числом способов, как мы увидим, невелико, и потому геометрический анализ имеет большую ценность. [c.62]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]


    Ряд полисахаридов проявляет свойства стереорегулярных полимеров и может с большей или меньшей легкостью образовывать квази-кристаллические структуры. В этом случае применение рентгеноструктурного анализа дает сведения о конформации полимерной цепи, способе упаковки полимерных цепей в кристаллических областях и размерах элементарной ячейки кристалла. Исследования проводят либо с природными образцами полисахаридов с высокой степенью ориентации молекул (например, кристалличность целлюлозы в клеточных стенках водоросли Valonia ventri osa приближается к 100%), либо с пленками полисахаридов, ориентация молекул в которых достигается наложением механического напряжения. С помощью рентгеноструктурного анализа установлено, например, что полимерная цепь целлюлозы имеет линейную конфор-мaцию с повторяющимся звеном длиной 10,3 А, состоящим из двух остатков глюкозы, повернутых друг относительно друга на 180°. Сходные [c.516]

    Наиболее доступен для такого анализа рост сферолитов у таких стереорегулярных полимеров с высокой кристалличностью, как полиэтилен. С первого взгляда неясно, какими примесями, исключаемыми из кристаллизации, может определяться сферолитная кристаллизация в таких системах. Возможно, что важную роль играют при этом молекулы, молекулярный вес которых значительно ниже среднего этот взгляд нашел некоторое подтверждение в том факте, что у образцов полиэтилена, богатых молекулами с низким молекулярным весом, сопротивление к напряжению излома намного меньше. Может также играть роль сильная запутанность молекул, возникающая местами в расплаве. То, что кристаллы имеют волокнистый габитус, не подлежит сомнению не вызывает никакого сомнения также тот факт, что кристалличность внутри сферолитов продолжает медленно расти в течение длительного периода времени. Таким образом, несмотря на возможную неопределенность причин, ясно, что по существу режим кристаллизации полиэтилена такой же, как для других поли- [c.466]

    Существует ряд каталитических систем, способных осуществлять стереоконтроль при полимеризации замещенных эпоксидов. На этих системах образуются регулярные полимеры. Однако методы анализа стереорегулярности только начинают развиваться, хотя применительно к виниловым полимерам эти методы хорошо разработаны и широко используются. [c.365]

    Матричный метод впервые был предложен Т. Шиманучи и С. Мидзусимой при расчете геометрии стереорегулярных кристаллических полимеров [126]. В анализе пептидов и белков локальные системы координат целесообразно связывать с атомами основной цепи. В правой прямоугольной системе координат ось х направляется от атома по связи его с последующим атомом, ось у располагается в плоскости пептидной группы, а ось Z определяется выбором правой системы (рис. 11.36). Координаты атомов боковых цепей задаются в локальных системах соответствующих атомов С . Переход от одной системы координат к другой сопровождается поворотом сначала на угол а вокруг оси z, а затем на угол ф вокруг оси х (а - валентный угол, ф - угол вращения вокруг связи N- ). В матричном выражении эта операция выглядит так  [c.234]

    Полимеризация окиси пропилена — простейшего из асимметрических эпоксидов — представляет собой практически всегда сополимеризацию (1- и I-стереоизомеров. При синтезе полимеров в присутствии стереоспецифических катализаторов образуются макромолекулы, содержащие достаточно длинные изотактические последовательности мономерных звеньев одного знака оптической активности, прерываемые включениями звеньев противоположного знака или аномальной структуры (с точки зрения раскрытия цикла) . В настоящее время нет достаточно корректных методов анализа микроструктуры пролипропиленоксида Для анализа стереорегулярности полипропиленоксида была выбрана асимметрическая полоса в интервале 1240—1300 см (рис. 17). Из теоретического расчета нормальных колебаний следует что этот интервал перекрывает оптическая ветвь, ограниченная с двух сторон частотами цепочечных колебаний в фазе (5 а) и в противофазе ( в). [c.89]

    Область 600—700 см" спектра поливинилхлорида является наиболее подходящей для анализа стереорегулярности поливинилхлорида (рис. 6.13). Из анализа нормальных колебаний следует, что в спектре регулярной синдиотактической цепи должны проявиться лишь полосы при 603 и 639 см . Эти полосы есть в спектре поливинилхлорида максимально высокой микротактичности, полученного полимеризацией в присутствии мочевины. В этой области спектра есть еще несколько полос, характеризующих конформацию и конфигурацию участков макроцепи [396а, 562, 563, 933, 1350, 1351]. При изучении модельных соединений было найдено, что положение полосы колебания v( l) зависит прежде всего от природы атомов, находящихся в транс-положении к атому хлора. Поскольку группа I может быть связана с ато--мами С и Н, то различают положения 5нн, Sh и Se [1536, 1539, 1542]. [c.241]

    СТЕРЕОРЕГУЛЯРНЫЕ ПОЛИМЁРЫ, высокомол. соед., макромолекулы к-рых состоят из определенным способом соединенных между собой звеньев с одинаковым или разным, но закономерно периодически повторяюпщмся расположением атомов в пространстве. Конфигурация звена макромолекулы определяется пространств, расположением заместителей вокруг центров стереоизомерии-тетраэдрич. атома С, двойной связи нли цикла. При одинаковой конфигурации звеньев макромолекула может иметь. шожество конформаций (см. Макромолеку.ш, Конформационный анализ). При описании конформаций указывают величину двугранного угла 0 между старшп.ми заместителями при связи С—С либо словесно обозначают расположение старших заместителей в ф-ле Нью.мена транс-Т, гош-О см. Номенклатура стереохимическая). [c.428]

    Адсорбционная ТСХ (АТСХ) основана на разделении макромолекул в соответствии с их адсорбционной активностью, возрастающей с увеличением молекулярной массы или доли адсорбционно-активных полярных групп (в случае сополимера). АТСХ с успехом используют для разделения гомополимеров по молекулярной массе и стереорегулярности, сополимеров по составу и типу чередования звеньев, для анализа ММР олигомеров с полным разделением на олигомергомоло-ги, для определения функциональности олигомеров (когда их центральные звенья не адсорбируются). [c.100]

    Для изотактического полимера наблюдается вицинальное спин-спиновое взаимодействие, очень схожее с взаимодействием в изотактическом полистироле. Следовательно, конформации этих полимеров в растворе аналогичны [19] (гл. 9). Полимеры, полученные в присутствии н-бутиллития, менее стереорегулярны, а полимеры, полученные в тетрагидрофуране в присутствии диэтилмаг-ния, очевидно, почти полностью атактичны, хотя провести точный анализ их спектров трудно [19]. [c.140]

    Каковы основные черты взаимного расположения стереорегулярных макромолекул в кристаллах Одним из наиболее распространенных и важных методов, дающих информацию об этом, является метод рентгеновской дифракции. При рентгеноструктурном анализе полимеров имеют дело с агрегатом цепных молекул, в упаковке которых возможны разнообразные нарушения [19]. Полное определение кристаллической структуры возможно лишь при наличии образцов с высокой степенью упорядоченности. Самая высокая степень порядка достигаемая большинством полимеров, это кристаллические волокна, которые можно рассматривать как множество монокристалликов, причем у каждого из них кристаллическая ось совпадает (или почти совпадает) с осью волокна. [c.61]

    Стереорегулярность полиметил-а-хлоракрилата изучали Мацуд-заки с сотр. [94] на частоте 100 МГц в растворе в е-диметилсуль-фоксиде. Полимер, синтезированный в присутствии фенилмагний-бромида при О °С, дает спектр, в котором сигнал метиленовых протонов представляет, главным образом, мезо-квартет. Сигнал ме-токсильных протонов наиболее пригоден для анализа триад и соответствует Рт=0,68, хотя метиленовый сигнал свидетельствует о [c.95]

    Принципиальным успехом в развитии тонкослойной хроматографии явилось применение этого метода для анализа высокополимеров. В 1968 г. первые исследования по ТСХ статистических полимеров выполнены Б. Г. Беленьким и Э. С. Ганкиной [1] и Инагаки с сотр. [2]. С тех пор основным направлением исследований по ТСХ полимеров стало использование этого метода для изучения полидисперсности полимеров (композиционной неоднородности, ММР) и идентификации (диагностики) полимеров различной микроструктуры [3—51. Используя ТСХ, удалось разделить статистические сополимеры по составу, идентифицировать статистические, блок- и альтернирующие сополимеры, диагностировать и разделить двух- и трехблочные сополимеры, разделить блок- и привитые сополимеры и сопутствующие им гомополимеры, идентифицировать и разделить стереорегулярные ПММА и ПС различной микротактичности, разделить геометрические изомеры ПБД и ПИ, идентифицировать линейные и разветвленные ПС, а также ПС с различными концевыми группами и отделить их от монофункционального и бифункционального ПС. Многочисленные исследования по ТСХ полимеров посвящены определению ММР гомополимеров, оценке М статистических сополимеров, определению ММР и функциональности олигомеров. [c.278]

    Хорошо известно, что синтез поливинилметилового эфира и его гомологов может быть проведен в присутствии катионных инициаторов типа ВРз- (С2Н5)20 с образованием (в зависимости от условий реакции) мягких каучукоподобных или жестких кристаллических продуктов. Ранее было установлено, что эти различия связаны со стереохимией цепи при этом, судя по данным рентгеноструктурного анализа, кристаллический полимер имеет преимущественно изотактическую конфигурацию [46, 47]. Позднее в присутствии инициаторов Циглера [48] были получены стереорегулярные полимеры. Исследования с помощью ЯМР-спектроскопии подтвердили ранее сделанные выводы относительно изомерных форм этих полимеров. Браунштейн и Вайле [45] нашли, что в спектрах кристаллических полимеров наибольшую интенсивность имеет пик метоксильных протонов /пт-триад каучукоподобные материалы имеют менее регулярную структуру, но /ит-триады преобладают в некоторой степени во всех изученных полимерах. [c.110]

    Сополимерный характер стереонерегулярных полимеров открывает возможность систематического анализа и исследования их свойств на основе изложенной выше теории Флори [1]. Практически здесь следует попросту приложить общую теорию к рассмотрению влияния различных типов нарушения стереорегулярности на кристаллизацию и плавление. Кольман [38] рассмотрел эту проблему в предположении, что образование стереопоследовательностей определяется чисто случайными процессами. Основной задачей является вывод соотношений, связывающих параметр вероятности генерирования последовательностей р и вероятность возникновения либо синдиотактической, либо изотактической последовательности в растущей цепи. [c.106]

    Анализ формы линии —СНг-группы поливинилхлорида позволяет полностью охарактеризовать локальную регулярность цепи определить доли синдиотактических и изотактических звеньев и, кроме того, рассчитать средние длины цепей для мономерных звеньев обоих типов стереорегулярности. На основании данных спектров ЯМР высокого разрешения возможно также рассчитать разность в энергиях активации присоединения мономера к растущей полимерной цепи для случая синдио- и изотактической последовательности [c.465]

    Информацию о микроструктуре цепи можпо получить методами дифференциального термического анализа, ориентационного двойного лучепреломления, колебательной снектроскопии. Как уже от.мечалось, поведение полимера в нек-рых реакциях (гидролиз, термич. разложение) зависит от степмги его стереорегулярности. Это используется для И. полимеров по их микротактичности. [c.401]

    Доказательства важной роли кристаллической решетки при полимеризации в твердом состоянии можно почерпнуть также из анализа стереоизомерии продуктов полимеризации. При полимеризации виниловых или вини-лиденовых соединений образуются полимеры с асимметричными центрами на каждом втором атоме основной цепи. Новейшая усовершенствованная техника позволяет получать полимерные цепи с длинной последовательностью симметричных центров одинаковой конфигурации (изотактические полимеры) или с регулярно чередующейся конфигурацией (синдиотакти-ческие полимеры). Уместно поставить следующий вопрос обеспечивается ли такая стереорегулярность преимущественно тем, что полимеризация происходит в кристаллах Полимеризация метилметакрилата в твердом состоянии при —100° методом молекулярных пучков в присутствии металлического магния как инициатора дает, как сообщалось, изотактический [c.259]

    Анализ полимеров, в отличие от анализа обычных низкомолекулярных органич. и неорганич. веществ, имеет свою специфику, обусловленную гл. обр. большим размером макромолекул, а также неоднородностью полимеров по мол. массам и особенностями стр1оения макромолекул (разветвленностью, неоднородностью расположения мономерных звеньев в цепи, стереорегулярностью и др.). [c.64]

    Адсорбционная ТСХ (АТСХ) основана на разделении макромолекул в соответствии с их адсорбционной активностью. Последняя растет с увеличением М или доли адсорбционно-активных полярных групп (для сополимера). В АТСХ используют растворители, содержащие малое количество полярного ад-сорбционно-активного компонента — вытеснителя при увеличении его содержания увеличивается. АТСХ с успехом используют для разделения гомополимеров по Л/ и стереорегулярности, сополимеров по составу и типу чередования звеньев, для анализа ММР олигомеров (е полным разделением на полимергомологи), для определения функциональности олигомеров (когда их центральные звенья не адсорбируются). [c.422]

    Тетраэдрическая конфигурация углеродных атомов позволяет построить для полиолефиновых цепей в кристаллах различные конформационные структуры. Их нужно четко отличать от конфигураций межатомных связей, обусловливающих стереорегулярность цепей полимера (см. раздел 2.2). Мюллер [26] и Бунн [27] при анализе кристаллических структур н-парафинов и полиэтилена показали, что для них характерны полностью гаранс( )-последовательности углерод-углеродных связей с максимально разнесенными группами -СН2-. Позже (в 1942 г.) Бунн [28] изучал типы конформаций цепей, которые могли возникать в других случаях. Пространственное расположение связей между группами -СН2- возможно только в трех следующих вариантах  [c.43]


Смотреть страницы где упоминается термин Анализ стереорегулярности: [c.491]    [c.138]    [c.227]    [c.698]    [c.83]    [c.196]    [c.92]    [c.83]    [c.196]    [c.162]    [c.253]    [c.422]   
Смотреть главы в:

Основы химии полимеров -> Анализ стереорегулярности

Инфракрасная спектроскопия полимеров -> Анализ стереорегулярности




ПОИСК





Смотрите так же термины и статьи:

Конформационный анализ стереорегулярных макромолекул



© 2025 chem21.info Реклама на сайте