Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмульгаторы и их значение

    Установлено [13], что тип образуюш ейся эмульсии в значительной степени зависит от соотношения объемов несмешивающихся жидкостей — дисперсионной средой стремится стать та жидкость, объем которой больше. При смешении жидкостей в присутствии эмульгатора значение соотношения объемов жидкостей значительно снижается, а иногда и совсем теряется. Установлено также, что на тип эмульсии влияет гидрофобность или гидрофильность стенок и поверхности мешалки, в которой происходит смешение двух фаз. [c.16]


    Благоприятными для скорости полимеризации являются применение мономеров с высокой концентрацией, увеличение количества эмульгатора и молекулярной массы жирной кислоты (до определенного значения), применение активной гидроперекиси, низкое содержание минеральных солей в водной фазе, отсутствие кислорода в системе и др. [c.254]

    Большое значение имеет кислотность воды, применяемой для отмывки каучука от остатков эмульгаторов и электролитов. При pH воды больше 8 с содержанием даже незначительных количеств ионов Са и Mg (около 2 мг-экв/л) в процессе отмывки образуются труднорастворимые соли полимера и этих металлов, ухудшающие качество готового каучука. При промывке водой с pH 6 этот обмен незначителен. Отмывка от остатков эмульгатора способствует повышению когезионной прочности частиц сырого каучука, что обеспечивает образование прочной, пористой ленты. [c.399]

    Эмульгаторы имеют особое значение в латексной технологии, поскольку они остаются в товарном латексе, оказывая существенное влияние на его основные коллоидно-химические характери стики и в первую очередь на устойчивость. Поэтому ассортимент эмульгаторов в латексной технологии весьма разнообразен и постоянно увеличивается. [c.592]

    Обычно в промышленных условиях полимеризацию проводят в присутствии смеси ионных и неионных эмульгаторов. Это, как правило, увеличивает скорость процесса и повышает устойчивость латексов по сравнению с латексами, синтез которых проводят в присутствии одних только НПАВ. Таким путем можно получать бутадиен-стирольные, бутадиен-нитрильные и некоторые другие латексы. С увеличением доли НПАВ в смеси эмульгаторов наблюдалось возрастание среднего размера частиц. При этом суммарное количество эмульгатора, необходимое для достижения определенной скорости процесса полимеризации, уменьшается. Процесс полимеризации в системах с НПАВ можно проводить в широком диапазоне значений pH, но в нейтральной среде скорость полимеризации обычно невелика. [c.601]

    Коэффициент гидратации возрастает с увеличением плотности упаковки адсорбционных слоев на поверхности латексных частиц. Избыточные количества эмульгатора в латексе уже ие влияют на него. Эффективные значения А находились в пределах 2—5 нм. [c.190]

    Образование на глобулах воды стабилизирующих адсорбционных слоев со структурно-механическими свойствами препятствует их коалесценции при столкновении. Состав и строение этих слоев весьма разнообразны и зависят от состава нефти и содержания в ней диспергированных частиц. Большое значение имеют также содержание в пластовой воде, сопутствующей нефти, растворенных и диспергированных веществ и кислотность воды. Для исследования свойств и состава природных эмульгаторов были сделаны попытки непосредственно выделить их из нефтяных эмульсий и исследовать их состав. [c.19]


    В литературе указаны следующие значения ГЛБ для различных областей применения ПАВ для эмульгаторов эмульсий типа В/М 3—6 для смачивателей 7—9 для эмульгаторов эмульсий М/В 8—18 для моющих веществ 13—15 [75, 76]. Эти данные весьма условны [c.98]

    В реактор вводится винилхлорид, эмульгатор и катализатор. Затем проводят нагревание до 45° С, чтобы началась реакция. После этого сохраняют переменный тепловой режим, с пернодам]1 сильного охлаждения для сохранения пределов заданных температур. Образованный поливинилхлорид удаляется после достижения заданных значений плотности продукта. [c.326]

    Следовательно, чем лучше эмульгатор растворим в масляной фазе, тем ниже температура обращения фаз. Этот вывод подтверждает значение растворимости эмульгатора в непрерывной фазе для устойчивости эмульсий при высоких температурах. [c.129]

    Обычно выбор соответствующих эмульгаторов или их смесей производят методом проб и ошибок . Недавно предложено несколько определенных значений ГЛБ неионных ПАВ п масел для подбора смеси эмульгаторов. [c.133]

    Предложены и другие методы определения значений ГЛБ. Грин-вальд и др. (1956) разработали метод титрования, заключаюш ийся в том, что 1,0 г эмульгатора растворяют в смеси из 4% бензола и 96% [c.134]

    Стабильность эмульсий зависит от химической природы эмульгатора и фаз. Оба фактора влияют на значение ГЛБ. Можно сопоставить стабильность со свойствами растекания дисперсной фазы (Росс и др., [c.136]

    Для подтверждения этих результатов сделано подобное сопоставление с использованием коэффициента растекания дистиллированной воды на маслах, содержащих два эмульгатора в различных пропорциях и охватывающих область ГЛБ приблизительно от 4 до 10. На рис. III.5 показано, что коэффициент растекания линейно уменьшается с увеличением ГЛБ по всей области. Отклонения появлялись при значениях ГЛБ выше 10, так как эмульгаторы в этих случаях меньше растворялись в масле. [c.137]

    Сравнительно устойчивые данные для эмульсий Б/М не были получены. Однако, используя значение ГЛБ как показатель стабильности, можно заключить, что устойчивость эмульсий В/М зависит от величины коэффициента растекания. Так как каждый эмульгатор имеет определенное значение ГЛБ, то можно обеспечить оптимальную стабильность приготовленных из них эмульсий М/В или В/М (табл. III.4). [c.137]

    По-видимому, стабильность должна зависеть от взаимодействия между гидрофобными группами эмульгатора и масляной фазой (Гриффин, 1954). Например, в случае масляной дисперсной фазы и смеси эмульгаторов спен-80 (моноолеат сорбитана) — твин-80 (полиокси-этилен моноолеат сорбитана) или спен-80 — твин-20 (полиоксиэтилен монолаурат сорбитана) для оптимальной эмульсионной стабильности необходимо значение ГЛБ в области 10, концентрация смеси эмульгаторов от 0,2 до 30% (Гриффин, 1956). [c.137]

    Если ГЛБ для смеси эмульгаторов нельзя определить с помощью указанной выше формулы из-за того, что неизвестны величины ГЛБ двух жидких фаз, нужно приготовить ряд эмульсий с соответствующими масляной и водной фазами. Смеси двух эмульгаторов со значениями Г-ЛБ, расположенными в противоположных концах его шкалы, например твин-80 и спен-80 (см. табл. III.6), используются в различных соотношениях. Все эмульсии необходимо готовить одним методом, с несколькими процентами эмульгирующей смеси. Стабильность эмульсий оценивается по скорости коалесценции, и ГЛБ, соответствующий оптимальной стабильности, является наиболее подходящим. [c.143]

    Межфазные натяжения измеряют как перед, так и после введения эмульгатора, и разность поверхностных натяжений представляет поверхностное давление я. Эмульгатор добавляют несколько раз и в каждом случае определяют межфазное натяжение. При введении эмульгатора площадь, занимаемая отдельной молекулой, уменьшается. Соответствующие значения площади вычисляют из размеров чашки и мольной концентрации используемого эмульгатора. [c.183]

    Предполагается, что нет ни притяжения, ни отталкивания между молекулами, поэтому уравнение (III.114) справедливо, когда я -> О или S оо. Давление пленки при любом значении S обычно больше на поверхности раздела масло — вода, чем в случае воздух — вода, потому что молекулы масла проникают в промежутки углеводородных цепей эмульгатора, уменьшая силы притяжения между ними. [c.185]

    Эмульсии представляют собой дисперсные системы, состоящие из мельчайших капель одной жидкости, распределенной в другой, в которой первая жидкость нерастворима или мало растворима. Размеры капелек составляют несколько (1—50) микрон в поперечнике. Одна из фаз эмульсии обычно вода, другой может быть любая органическая жидкость, не смешивающаяся с водой. Эту жидкость принято называть маслом. Кроме воды и масла, устойчивая эмульсия обязательно содержит третий компонент, эмульгатор, сообщающий агрегативную устойчивость системе. В зависимости от того, какая фаза образует дисперсионную среду, различают эмульсию маслы в воде, м1в, и воды в масле б1м. Эмульсии получаются, главным образом, дисперсионным методом путем встряхивания или перемешивания. Разбавленные (меньше 1%) и концентрированные (больше 1%), эмульсии различаются по природе агрегативной устойчивости. В стабилизации первых главную роль играет электроки-нетический потенциал и связанная с ним толщина сольватной оболочки. Заряженные одноименно капельки отталкиваются и не слипаются. Эти эмульсии приближаются по свойствам к лиофобным коллоидным системам. В концентрированных эмульсиях, имеющих большое практическое значение, устойчивость определяется, главным образом, характером прочной межфазной поверхностной пленки, не разрывающейся при столкновениях. Пленка обычно образуется третьим веществом, эмульгатором. Значение пленки эмульгатора сводится к понижению поверхностного натяжения на границе двух фаз и уменьшению, таким образом, работы образования поверхности раздела при диспергировании, согласно уравнению/ =5 а. При понижении поверх- [c.227]


    В процессе эмульгирования мономеров в растворе анионоактивного эмульгатора образуются эмульсии прямого типа масло — вода. Длительное время в качестве эмульгатора применялась натриевая соль дибутилнафталинсульфокислоты, известная под названием некаль, с добавкой небольших количеств мыл жирных кислот. Однако отсутствие возможности организовать биохимическую очистку сточных вод в связи с токсичным действием некаля на микроорганизмы привело к необходимости применения других эмульгаторов. Из них наибольшее значение приобрели мыла карбоновых кислот — канифольные и жирнокислотные эмульгаторы, применяемые в смеси или индивидуально. Замена некаля этими эмульгаторами, помимо решения проблемы биохимической очистки сточных вод, позволила одновременно улучшить качество бутадиен-стирольных каучуков. [c.244]

    Наиболее широко (особенно при получении бутадиен-стирольных латексов) используются анионоактивные эмульгаторы, в первую очередь соли карбоновых кислот с длиной цепи от С12 до ie-Они эффективны в диапазоне pH 9—11 и менее пригодны при получении латексов на основе мономеров с легкоомыляемыми группами аммониевые или аминомыла (этаноламин, морфолин), эффективны при pH 8—9. Алкилсульфаты и алкил (арил) сульфонаты пригодны в широком диапазоне значений pH водной фазы. Некоторые ПАВ такого типа иногда используют в качестве дополнительных эмульгаторов .  [c.592]

    Агломерация под давлением [56] заключается в пропускании латекса через дросселирующий клапан под давлением около 30 МПа. Она осуществляется в конструктивно измененных молочных гомогенизаторах. В то время как все описанные выше процессы агломерации протекают при временном понижении стабилизующего действия эмульгатора (пли за счет уменьшения адсорбционной насыщенности, или частичного разрушения мыла, или, наконец, уменьшения его подвижностп в адсорбционных слоях при понижении температуры), процесс агломерации под давлением можно проводить даже в присутствии избыточного эмульгатора и при значениях pH вплоть до 13. Это обусловлено очень интенсивным воздействием, вызывающим коалесценцию частиц. Автор процесса считает, что агломерация под давлением протекает благодаря сдвиговым усилиям, вызванным кавитациями, возникающими в латексе при продавливании через гомо- [c.598]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Получаемые по реакции Принса 1,3-диоксапы п 1,3-гликоли имеют некоторое самостоятельное значение в качестве растворителей и промежуточных продуктов для синтеза пластификаторов, эмульгаторов и т. д. Но главное практическое значение эта реак-ци5[ нашла для производства изопрена, технология которого была впервые разработана в Советском Союзе М. И. Фарберовым и М. С. Немцовым. В настоящее время изопрен этим путем получают и в других странах. [c.556]

    Исследованиями П. А. Ребиндера и его школы [15, 20] установлено, что основной причиной устойчивости достаточно концентрированных эмульсий нефти типа В/Н является структурно-механический барьер, образующийся вокруг глобул воды в результате адсорёции на межфазной поверхности эмульгаторов (асфальтенов, смол и щ>.), содержащихся в вефтн. Остальные факторы стабилизации эмульсий (электрокинетичес-кяй потенциал, расклинивающее давление и др.) для нефтяных эмульсий типа В/Н являются второстепенными и существенного значения не имеют. По П. А. Ребиндеру стабилизацию нефтяных эмульсий обеспечивают  [c.18]

    Значения pH нефтесодержащих вод лежат в пределах 6-7. Поверхностное натяжение при 20 °С составляет 6,75—7,25 мкДж/см , что позволяет сделать заключение о наличии некоторого количества поверхностноактивных компонентов, вьшолняющих роль эмульгаторов. Солевой состав вод представлен преимущественно хлоридами натрия и кальция. Значительное содержание солей позволяет допустить возможность образования ионно-электростатического фактора устойчивости. Содержание нефтепродуктов в водах как в поверхностном слое, так и в объеме изменяется в процессе эксплуатации. [c.35]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Весьма важное значение алкилпроизводные нафталина, антрацена, фенантрена приобрели в производстве алкиларилсульфо-натов, которые широко используются в качестве эмульгаторов эмульсионной сополимеризации диеновых углеводородов со стиролом, в качестве моющих средств, заменяющих мыла нри очистке шерсти, и для различных других целей. [c.121]

    Наиболее распространенным методом определения чисел ГЛБ является метод Гриффина, основанный на способности ПАВ образовывать устойчивые эмульсии типа вода—масло или масло — вода. Условно выбраиы значения ГЛБ для олеата натрия—18, триэтаноламииа — 12, олеиновой кислоты — 1. Чем выше гидро-фильность, тем больше число ГЛБ, которое может изменяться от 1 до 40. Определение чисел ГЛБ проводят следующим образом. Готовят эмульсии нз воды и стандартного масла с эмульгаторами из смесей ПАВ с известным и неизвестным значениями ГЛБ. Эмульсии выдерживают 24 часа, затем определяют наиболее устойчивую эмульсию или фиксируют обращение эмульсии и рассчитывают ГЛБ исследуемого ПАВ, считая это свойство аддитивным, по формуле [c.292]

    Тип эмульсии, образующейся при механическом диспергировании, в значительной мере зависит от соотношения объемов фаз. Жидкость, содержащаяся в большем объеме, обычно становится дисперсионной средой. Прп равном объемном содержании двух жидкостей прн диспергировании возникают эмульсии обоих типов, но выживает из них та, которая имеет более высокую агрегативную устончивосП) и определяется природой эмульгатора. Способность эму п>гатора обеспечивать устойчивость эмульсии того или иного типа определяется энергетикой взаимодействия его с полярной и неполярной средами, которая может быть охарактеризована при помощи полуэмпирической характеристики— числа гидрофильно-липофильного баланса (ГЛБ) позерх-иостно-активных веществ. ПАВ, имеющие низкие значения ГЛБ (2—6), лучн1е растворимы в органических средах и стабилизируют эмульсии в/м, тогда как при ГЛБ = 12—18 ПАВ лучше растворяются в воде и стабилизируют эмульсии м/в. [c.172]

    Помимо этого, вязкости дисперсной фазы ("Пф) и дисперсионной среды (т1с) также играют определенную роль. Теоретические расчеты показывают, что значение уд несколько уменьшается при увеличении отношения Лф/т ,. На это указали Павлушенко с сотрудниками, но Роджер, а также Салливан и Линдсей (1962) нашли противоположную зависимость. Такое увеличение может происходить, если Т1ф возрастает настолько, что препятствует коалесценции и, следовательно, сдвигает равновесие в сторону образования большего числа капель и большего значения 5уд. Однако имеются определенные трудности в объяснении экспериментальных результатов. Вязкость дисперсионной среды может отличаться от вязкости чистого растворителя из-за присутствия эмульгатора. Роджер, Трайс и Раштон (1956) нашли приближенное количественное соотношение [c.25]

    Обращение фаз — нестабильное состояние эмульсии, когда неожиданно происходит изменение типа эмульсии от В/М к М/В илп наоборот. На обращение фаз влияют объемная концентрация компонентов, природа и количество эмульгатора. При изменении концентрации п благоприятном сочетании всех остальных факторов обращение фаз происходит, когда концентрация достигает — 75%. Эта величина близка к теоретическому значению 74%, что соответствует плотной упаковке жестких шаров одинакового размера. Но совпадению этих величин не следует придавать большого значеиия, так как в концентрированных эмульсиях каили могут не иметь сферической формы, а кроме того, обращение фаз происходит и при иных концентрациях. Согласно схеме, предложенной Шульманом II Кокбейном (1940), при возрастании концентрации масла в эмульсин М/В капли масла сталкиваются друг с другом и соединяются таким образом, что теперь уже вода оказывается в виде каили (рис. 1.25). Эта упрощенная схема является, вероятно, правильной. Следует добавить, что на обращение фаз влияют также температура и динамика процесса эмульгирования. [c.66]

    Грут и Волд (1964) пришли к выводу, что повышение стабильности происходит по мере увеличения адсорбции додецилсульфата натрия на поверхности раздела М/В. После коалесценции шариков освободившийся эмульгатор переносится водной фазой в нижнюю часть оставшегося слоя эмульсии. Во время переноса часть эмульгатора вновь адсорбируется на оставшейся поверхности раздела М/В, причем степень адсорбции зависит от ее первоначальных значений и от высоты слоя эмульсии. Эта дальнейшая адсорбция может изменить реологические свойства граничной пленки. [c.132]

    Эмульгатор В/М имеет низкий ГЛБ, солюбилизирующее вещество — высокий и эмульгатор М/В — промежуточное значение (табл. 111.3). Относительное значение гидрофильных и гидрофобных групп было впервые определено при исследовании эмульсий со смесью неион-нных эмульгаторов типа В/М и М/В, содержащих одну и ту же масляную и водную фазы. С изменением соотношений эмульгаторов противоположного характера эффективность любой комбинации определяли визуально по отслаиванию дисперсной фазы, имеющему максимальное значение при определенной концентрации гидрофильного [c.132]

    Растворимость многих ПАВ в воде приблизительно можно сопоставить с их значениями ГЛБ (табл. Ш.З). Если эмульгатор растворим в воде, то его ГЛБ вычисляют по температуре помутнения, т. е. той температуре, при которой 5% водный раствор дает резкое изменение мутности (рис. III.1). Температура помутнения для производных оксиэтилена в большей степени зависит от длины полиоксизтиле-новой цепи и, следовательно, от ГЛБ, чем от их концентрации (Гриффин, 1956). [c.134]

    Выбранная смесь растворителей в отличие от других позволила отчетливее определить конец титрования и получить лучшую воспроизводимость результатов, особенно для ионных эмульгаторов. Содержание диоксана в воде может изменяться, что сказывается на титровании. Для предотвращения этого влияния объем бензола подбирают таким, чтобы значение водного числа самой смеси было 21,6—21,8 ж.г. При титровании следует наблюдать за температурой, ибо водное число изменяется приблизительно на 0,08 мл град. Природа изменения, совпадающего с возникновением пеисчезающего помутнения, неизвестна, однако это может соответствовать инверсии эмульсий. [c.134]

    Время удерживания чувствительно к изменениям температуры и уменьшается с ее увеличением. Значения ГЛБ для смесей эмульгаторов, полученные из уравнения (111.6), незначительно отличаются от теоретических, рассчитанных из предположения, что значения для двух компонентов смеси суммировались. В этом случае (Ракз и Орбан, 1965) отклонение отрицательно. [c.136]

    Отслаивание фазы, коэффициент растекания и значение ГЛБ сравнивались для различных масел и смесей двух эмульгаторов (снен-80 и твин-80) в разных соотношениях и для эмульсий, приготовленных из них. Коэффициенты растекания, полученные из данных межфазного натяжения, являются характеристикой способности масла растекаться по 1% водному раствору смеси эмульгаторов. В области значений ГЛБ 4—15 коэффициент растекания линейно увеличивается с повышением ГЛБ (рис. III.4). Выше значения ГЛБ, равного 8, зависимость линейна и отклонение от нее в нижней части графика объясняется неполной растворимостью эмульгатора в воде. [c.136]

    Ригельман и Пихон (1962) пересмотрели опубликованные данные п пашли, что устойчивые эмульсии М/В можно получить при значениях ГЛБ от 2 и выше 17. При низком ГЛБ эмульсия В/М не образуется. Исследования Петерсена и др. (1964) подтвердили это предположение. Они нашли, что при эмульгировании глицерина и олеиновой кислоты не было корреляции меячду ГЛБ нескольких классов неионных эмульгаторов и типом образующейся эмульсии. [c.143]

    Это двойственное поведение нельзя объяснить с помощью значений ГЛБ. Тем не менее, несмотря на такие недостатки, понятие ГЛБ оказывается пригодным при получении большого числа эмульспй, особенно, если используется смесь эмульгаторов противоположного характера. [c.143]


Смотреть страницы где упоминается термин Эмульгаторы и их значение: [c.348]    [c.263]    [c.595]    [c.132]    [c.65]    [c.11]    [c.12]    [c.20]    [c.114]    [c.143]   
Смотреть главы в:

Учение о коллоидах Издание 3 -> Эмульгаторы и их значение




ПОИСК





Смотрите так же термины и статьи:

Эмульгаторы



© 2025 chem21.info Реклама на сайте