Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы теории физических систем

    Базируясь на своих представлениях о строении материи, Ломоносов разработал так называемую "корпускулярную теорию строения вещества", в которой впервые разграничил понятия атома, элемента, молекулы, простого вещества. С этого времени под "элементом" стали понимать элемент химический, а не абстрактный элемент материи. Правильнее было бы говорить "элемент химии", а не "химический элемент". Потому что термин элемент приобрел самое широкое использование в науке и технике элемент дома, моста, солнечной системы и т. д. К сожалению, в толковых и энциклопедических словарях нет современного определения элемента в широком смысле. Правда, в ФЭС [6, с. 793] довольно подробно описывается история возникновения и станов-.иения понятия "элемент". Первоначально — это буквы латинского алфавита Э(Ь)-Э(М)-Э(К)ты (иначе, члены ряда букв алфавита). Потом - простейшие начала физические элементы (Платон). У Аристотеля "элемент" становится философским термином, употребляющимся очень широко. В дальнейшем элементом стали называть составную часть сложного тела. Наиболее полно смысл термина "элемент" сегодня раскрывается в системно-структурном методе познания в сопоставлении (и противопоставлении) с другим коренным понятием метода "система". Здесь элемент — составная часть системы, органически связанная с другими ее частями (элементами), которые совокупно обеспечивают целостность последней. [c.22]


    Н. X. Д. Бор заложил основы первой физической теории периодической системы элементов, в которой связал периодичность свойств элемептов с формированием электронных конфигураций атомов по мере увеличения заряда ядра. Применил два квантовых числа—п и к. Обосновал подразделение групп периодической системы на главные и побочные. Впервые объяснил подобие свойств редкоземельных элементов. [c.669]

    Периодическая система элементов Д. И. Менделеева отражает периодический закон, а вместе с тем и строение атомов элементов. Теория строения атомов объясняет периодическое изменение свойств эле.ментов. Возрастание положительных зарядов атомных ядер от 1 до 107 приводит к периодическому повторению строения электронных оболочек. А поскольку от них зависят химические свойства элементов, то они периодически повторяются. В этом — физический смысл периодического закона. [c.43]

    Внести ясность смог бы только новый теоретический фундамент. Разрешить вопрос удалось лишь в 1913 году Фредерику Содди теорией изотопии элементов. Согласно ей, один и тот же элемент может состоять из нескольких разновидностей атомов, а именно изотопов, которые имеют различные атомные массы (массовые числа). Некоторые элементы являются чистыми, то есть состоят только из одного рода атомов с твердо определенной атомной массой. Смешанные элементы, напротив, имеют несколько различных по массе изотопов. Изотопы одного и того же элемента химически неразличимы друг от друга, следовательно, их нельзя разделить химическим путем. Однако у них есть вполне определенные физические различия, которые для радиоактивных элементов проявляются в типе распада и в характерном периоде полураспада. Конечно, теперь уже недостаточно было определения атомной массы, чтобы найти место для элемента в периодической системе. Только с введением для каждого элемента еще одной величины — порядкового номера, позднее названного зарядом ядра, наступил, действительно, порядок . Водород получил порядковый номер 1, уран как последний элемент— порядковый номер 92, в соответствии с числом электронов в их атоме. Однако оставалось не ясным, почему изотопы одного и того же элемента могут иметь различные массовые числа. Этот вопрос был разъяснен только 20 лет спустя. [c.70]

    Многие процессы движения жидкостей могут быть интерпретированы при помощи цепей, содержащих сопротивление, емкость и инерционный элемент . Схемы с сосредоточенными параметрами содержат как линейные, так и нелинейные элементы цепи. Исследуя линейные схемы при помощи обычной теории цепей, нетрудно найти соотношения, существующие между давлением, потоком и энергией. Значительно труднее описать поведение нелинейных цепей. В этом случае используются графические методы, специальные математические приемы, моделирующие физические системы, а также вычислительные машины. [c.71]


    Самой первой и наиболее четко выражающей существо периодического изменения свойств элементов была и остается модель, которую мы назвали бы химической. Она тождественна менделеевской естественной системе и, следовательно, является канонической. Именно эту модель мы и имели в виду, формулируя определение системы как упорядоченного множества. Физическое обоснование закона периодичности и разработка Н. Бором квантовой модели строения атома привели к появлению новой модели явления периодичности, ее можно назвать формальной физической. Эта модель отражает существование электронной периодичности и представляет фундамент формальной теории периодической системы. Формализм ее заключается в том, что ее построение проводилось с непременным учетом закономерностей изменения химических свойств элементов по мере роста 2, а не на основе каких-либо строгих теоретических представлений. Формальная физическая модель относится к реальной схеме формирования электронных конфигураций атомов, и ее можно рассматривать в качестве физического объяснения явления периодичности, другими словами — как интерпретацию химической модели на электронном уровне развития учения о периодичности. [c.34]

    На основе периодического закона и периодической системы, Д. И. Менделеева быстро развивалось учение о строении атома. Оно вск ьмо физический смысл периодического закона и объяснило расположение элементов в периодической системе. Правильность учения о строении атома всегда проверялась периодическим законом. Вот еще один пример. В 1921 г. Н. Бор показал, что элемент с 2=72, существование которого предсказано Д. И. Менделеевым в 1870 г., должен иметь строение атома, аналогичное атому циркония (2г— 2.8.18.10.2, а НГ — 2.8.18.32.10.2), а потому искать его следует среди минералов циркония. Следуя этому предсказанию, в 1922 г. венгерский химик Д. Хевеши и голландский физик Д. Костер в норвежской циркониевой руде открыли элемент с 2=72, назвав его гафнием (от лат. названия г. Копенгагена — места открытия элемента). Это был величайший триумф теории строения [c.50]

    Весь XIX в. в химии прошел под знаком атомистических идей. Не было и нет такой крупной химической проблемы, которая так или иначе не опиралась бы на атомистическую идею строения вещества, не была ее дальнейшей конкретизацией. Теория химического строения Бутлерова и связанное с ней понятие валентности, менделеевская периодическая система химических элементов, теория электролитической диссоциации и лежащее в ее основе понятие иона, гидратная теория растворов Менделеева и другие важнейшие теории и понятия органической и неорганической химии и вновь возникшей в конце XIX в. физической химии являются по сути дела разработкой и углублением отдельных сторон атомистической теор-и. [c.260]

    Основополагающая работа Бора 1913 г. [42] стала важнейшим опорным пунктом для развития представлений о связи свойств элементов со строением атома и, далее,—для непосредственной разработки формальной теории периодической системы. Характеризуя эти представления в целом, можно выделить два направления одно, связанное со статическими электронными теориями строения атома (В. Коссель — Г. Льюис — И. Ленгмюр), и другое, заключавшееся в обосновании схемы формирования электронных конфигураций атомов по мере роста на основе квантовой теории атома и увязывании этой схемы с периодичностью изменения свойств химических элементов. Оба указанных направления взаимно коррелировали друг с другом и в конечном счете привели к долгожданному физическому обоснованию явления периодичности. [c.248]

    Таким образом, можно утверждать, что к середине 20-х годов была разработана формальная теория периодической системы периодическое изменение свойств элементов находило объяснение в закономерностях формирования электронных конфигураций атомов с ростом 2. Однако модели этих конфигураций не опирались на какую-либо строгую физическую теорию, а основывались в значительной степени на химических и спектроскопических данных. Что же касается чисто физической стороны боровской теории атома, то она страдала ограниченностью, которую была не способна преодолеть хотя представление о возможных орбитах электрона опиралось на квантовую теорию, расчет этих орбит основывался на методах классической механики и электродинамики. Таким образом, теория Бора не была последовательно ни квантовой, ни классической. Как метко заметил в свое время В. Брэгг, в ней мы как бы должны по понедельникам, средам и пятницам пользоваться классическими законами, а по вторникам, четвергам и субботам — квантовыми [45, стр. 330]. [c.252]

    За сто лет, прошедших после открытия периодического закона, постепенно, шаг за шагом все более и более выяснялось громадное, основополагающее значение этого гениального открытия Д. И. Менделеева как для химии, так и для атомной физики. Вместе с тем возникновение и развитие атомной физики в свою очередь явилось фундаментом создания физической теории периодической системы, объяснившей причины как периодичности химических (и некоторых физических) свойств элементов вообще, так и тех конкретных форм ее, в которых эта периодичность проявляется в системе Д. И. Менделеева. [c.54]


    Весьма существенным для теории периодической системы является вопрос о типе электронной конфигурации атомов. Он связан с нахождением поддающейся физическому определению величины, которая была бы инвариантна в пределах каждой совокупности элементов — электронных [c.64]

    Н. Бор развил представления о строении электронных оболочек атомов по мере роста заряда ядра, дал физическое обоснование явления периодичности и разработал теорию периодической системы элементов. [c.588]

    Изучение распространенности химических элементов проливает свет на проблемы происхождения и химической истории Солнечной системы, Земли, построение модели Солнца и звезд, понимание физических и химических процессов в космосе, разработку теории образования химических элементов. [c.51]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    Физическая химия как наука начала складываться во второй половине прошлого века, хотя уже М. В. Ломоносов впервые указал важность этой дисциплины и создал первый курс физической химии. Ряд важнейших основ современной физической химии был заложен в России и потом в СССР. А. М. Бутлерову принадлежат важнейшие идеи, положенные в основу химических структурных формул, Д. И. Менделееву — периодическая система элементов. В наше время большое значение имеют работы школ автора теории цепных взрывов Н. Н. Семенова и одного из создателей современной электрохимии А. Н. Фрумкина. [c.9]

    С развитием математического моделирования процессов и реакторов и исследованием с помощью математических методов динамических процессов нестационарной кинетики математика сделалась органическим вплетением в логические основания и химии, и химической технологии. И если в настоящее время учение о химических процессах называют и химической физикой (школа И, Н. Семенова), и физической кинетикой, то цементирующим элементом в системе, которая включала в себя химические и физические представления о химико-технологическом процессе, является скорее всего именно математика. И что особенно интересно и важно — это то, что в этой системе происходит развитие одновременно и параллельно и химических, и физических, и технических, и математических знаний. Дело в том, что решение кинетических задач оказалось невозможным в рамках классической теории дифференциальных уравнений. Сложный нелинейный характер протекания химических процессов выдвинул ряд новых задач, решение которых обогатило собственно и математику. В последние несколько лет создалась новая дисциплина, пограничная между математикой и химией, а фактически между математикой и теорией химической технологии, которая призвана решать задачи химии в основном в связи с созданием промышленного химического процесса, — математическая химия, призванная служить надежным теоретическим основанием учения о химических процессах. [c.163]

    Теоретическое обоснование Периодического закона дано в квантово-механической теории строения атома. Физический смысл порядкового номера Z заключается в том, что Б нейтральном атоме данного элемента содержится Z протонов (в ядре) и Z электронов (на оболочке). Так, в ядре атома бора B(Z = 5) имеется 5 протонов, а на оболочке — 5е . Физической основой структуры Периодической системы является определенная последовательность заселения электронами оболочки атома при возрастании Z. [c.147]

    Вторая половина XIX в. ознаменована бурным развитием органической и физической химии, открытием Д. И. Менделеевым периодического закона и периодической системы элементов. Началось исследование многокомпонентных систем, изучение взаимосвязи реакционной способности соединений с их химическим строением. Многие из открытий того времени вошли в теоретические основы современной аналитической химии, например теории электролитической диссоциации С. Аррениуса, уравнение Нернста. [c.5]

    Периодический закон и периодическая система оказали неоценимую услугу для развития теории строения атома. В свою очередь, познание строения атома привело к эволюции как периодического закона, так и периодической системы. Наряду с установлением новой фундаментальной величины — положительного заряда ядра атома — и совпадением его с порядковым номером элемента в таблице Д. И. Менделеева, наряду с раскрытием физического смысла периодического закона, или причин периодичности, появилась возможность открытия целой плеяды новых элементов и конструирования периодов таблицы. [c.99]

    Н. Бора. На химическом этапе закон периодичности и система Д. И. Менделеева рассматриваются в форме естественной системы химических элементов, вскрывающей и отражающей наблюдаемые отношения между элементами. Единство всех этих элементов в природе рассматривается как всеобщая взаимосвязь. Сам Д. И. Менделеев так говорил об этом ...Периодический закон, опираясь на твердую и здоровую почву опытных исследований, создался совер-Ц енно помимо какого-либо представления о природе элементов.... Естествознание нашло, после великого труда исследователей, индивидуальность химических элементов и потому оно может ныне ие только анализировать, но и синте ировать, понимать и охватывать как общее, единое, так и индивидуа.аьное, множественное. Единое и общее, как время и простраь ство, как сила и движение, изменяется последовательно, допускает интерполяцию, являя все промежуточные фазы. Множественное, индивидуальное... как дальтонов-ские кратные отношения — характеризуются другим способом в нем везде видны — при связующем общем — свои скачки, разрывы сплошности [И -, с. 221—222] Считается, что на физическом этапе эволюции идей о периодичности — этапе, который был подготовлен открытием и мпирическим обоснованием естественной системы элементов, появилась фундаментальная теория периодической системы. [c.49]

    Плутоний принадлежит к элементам VH периода таблицы Менделеева и следует в нем за ураном и нептунием. В отношении места этих элементов в периодической системе в настоящее время наиболее распространена теория Сиборга [3, гл. 17 170, 203, гл. 11 646, 648]. По этой теории у элементов, начиная формально с тория и кончая лауренсием, происходит последовательное заполнение четырнадцатью электронами внутреннего энергетического уров1НЯ 5/. Так как количество внешних валентных электронов (один электрон 6d и два —7s) при этом не меняется и остается рав ным количеству валентных электронов актиния, химические и физические свойства членов ряда должны быть сходны, а сам ряд получил название актинидов. Подобная закономерность четко выражена у лантанидов, имеющих электронную структуру сверх структуры ксенона if ndQs и главную валентность 3. [c.13]

    Берталанффи считает биологические явления познаваемыми средствами точной науки. Мнимое противоречие с термодинамикой снимается, если учесть, что организмы — открытые системы, обменивающиеся с окружающей средой и веществом и энергией. Между тем каноническая термодинамика относится к изолированным системам. Поэтому для физического истолкования биологических явлений необходима термодинамика открытых систем, неравновесная термодинамика. Берталанффи усматривает основу теоретической биологии в теории систем. Система — совокупность объектов, взаимодействующих друг с другом. Свойства системы нельзя представить суммой свойств. образующих систему элементов. Рассмотрение системности позволяет исследовать проблемы целостности, динамического взаимодействия и организации. Для биологии эти проблемы — основные. [c.14]

    Основные научные исследования относятся к физической химии. Совместно с Р. Абеггом выдвинул (1899) одну из первых теорий электросродства, в которой понятие об электроне применено к характеристике неорганических соединений и установлена связь мел<-ду электросродством, с одной стороны, и растворимостью электролитов, степенью диссоциации и положением. элементов в периодической системе, с другой. Изучал вопрос о влиянии одного вещества на растворимость другого в концентрированных растворах, пред- [c.65]

    Один из основоположников геохимии. Основные научные работы посвящены физической химии природного минералогенезиса,. кристаллохимии и химии минералов, горных пород и земной коры. Сформулировал (1911) минералогическое правило фаз из п компонентов может совместно существовать не более п минералов. Вычислил (1914) кривую реакции образования волластонита из кальцита и кварца и применил физико-хи-мические представления к объяснению равновесных соотношений контактовых минералов. Вскрыл (1923—1927) важные соотношения между положением элементов в периодической системе и размерами их атомов и ионов. Установил законы образования различного типа кристаллических структур. Выдвинул (1923) основные положения теории геохимического распространения элементов. Разработал (1923—1924) геохимическую классификацию химических элементов. Особое внимание уделял изучению кристаллов оксидов редкоземельных элементов, а также зависимости твердости кристаллических веществ от их структуры. Исследовал (1929—1932) распространение редких элементов — германия (впервые обнаружил его в углях), скандия, галлия, бериллия и т. п. Будучи сторонником гипотезы об огненно-жидкой дифференциации Земли на геосферы, рассмотрел (1935—1937) ее в свете данных своих геохимических экспериментов о составе пород, метеоритов и оболочек Земли. Осуществлял научно-технические работы в области прикладной минералогии и химической технологии. Организовал производство алюминия из лаб-радоритовых пород Норвегии, калийных удобрений из биотитов. [c.146]

    Однако инвариантными ко всем симметрическим преобразованиям системы должны быть также матричные элементы любых физических величин. Выполнение этого требования позволяет с помощью теории групп анализировать правила отбора для квантовых переходов, минуя непосредственное вычисление соответствующего интеграла. Такой анализ позволяет однозначно установить равенство или отличие вероятности перехода от нуля и тем самым решить вопрос о раз-решенности или запрешенности соответствующего перехода. С помощью теории групп устанавливаются также направления моментов дипольных переходов. [c.42]

    Одним из важнейших законов естествознания, отражающих единство и многообразие мира, является периодический закон, открытый Д. И. Менделеевым. Основываясь на отображающей его периодической системе элементов, легче вскрыть закономерности строения атомов, установить изменения различных функциональных зависимостей от заряда ядра атома, понять причины подобия в свойствах элементов-аналогов. С самого создания системы элементов она сыграла реш ающл ю роль в открытии 1ЮВЫХ элементов, начиная с галлия, скандия и германия, предсказанных в свое время Менделеевым, и до полученного советскими учеными в 1964 г. элемента с порядковым номером I04, названного курчатовие.м. Созданная в наше.м веке на ос юве квантовомеханических иредставлений теория строения атомов показала, что взаимосвязь элементов в периодической системе обусловлена закономерным изменением структуры их атолюв, и объяснила периодическое из.менение химических и некоторых физических свойств атомов. [c.12]

    Математический аппарат Изинга, Крамерса и Ванье связывает физические свойства одномерной кооперативной системы с состояниями ее элементов. Применение его к макромолекулам стало возможным на основе выдвинутой М. В. Болькенштейном и неоднократно подтверждавшейся на опыте идеи о поворотно-изомерном строении полимерной цепи, согласно которой можно говорить о дискретном наборе состояний (конформаций) мономерных единиц. О. Б. Птицыным и Ю. А. Шароновым [ ] было высказано предположение об аналогии между ближним одномерным порядком в аморфной полимерной цепи и дальним одномерным порядком в кристаллической цепи. Это предположение, справедливость которого для большинства полимеров можно теперь считать доказанной, позволило развить количественную поворотно-изомерную теорию физических свойств макромолекул в растворе и высокоэластическом блочном [c.13]

    Мы уже говорили о трех уровнях развития учения о периодичности — химическом, электронном (атомном) и ядерном они как бы соответствуют развитию, протекающему в трех измерениях. Для первых двух уровней характерно развитие в ширину и глубину. В ширину — совершенствование структуры периодической системы предсказание и открытие новых, неизвестных ранее э.чемен-тов, изучение на основе системы различных свойств химических элементов и их соединений и отыскание тонких закономерностей изменения этих свойств (здесь решающая роль принадлежит опыту и умению химиков). Когда в судьбу периодичности властно вмешалась физика, началось движение вглубь — познание физических причин периодического изменения свойств элементов, разработка теории периодической системы. Переход на атомный уровень отнюдь не означает, что химический уровень отпал оба они, многократно пересекаясь, дополняют друг друга, и без их теснейшего взаимопроникновения нельзя представить себе настоящую картину учения о периодичности. [c.69]

    Это, однако, не означает, что эмпиризм данных научных обобщений оказался полностью устраненным, хотя подобное утверждение и может показаться в настоящее время несколько парадоксальным. Между тем, оно справедливо. В самом деле, создание планетарной модели и ее усовершенствование привели к построению так называемой формальной теории периодической системы, теории, опирающейся на определенные закономерности формирования электронных конфигураций атомов по мере роста Ъ. Важнейший момент заключается в том, что сходные типы электронных конфигураций периодически повторяются. Этот принцип связал периодичность изменения свойств элементов с закономер-Н1ДМИ особенностями структуры их атомов. Первоначальная теория периодической системы является формальной потому, что опиралась на атомные модели, которые сами по себе не были результатом строго последовательных физических представлений. [c.253]

    Рассмотрены вопросы теории периодической системы Д. И. Менделеева, связатнгые с обоснованием и применением принципа группировки электронных состояний по сумме главного и орбитального квантовых чисел. При помощи этого принципа дана строгая формулировка правила, которому подчиняется последовательность заполнения электронных групп и подгрупп в основном состоянии атомов с увеличением порядкового номера элемента. На той же основе дано физическое определение совокупности подгрупп, заполнение которых происходит па протяжении периода системы Д. П. Менделеева, и решение задачи о зависимости между номером периода и его длиной. Получено решение ряда других задач, относящихся к зависимости между Z и распределением атомных электронов. [c.244]

    Элементы базовой системы называют базовыми элементами. Фляйшманн [2] показал, что в том случае, когда группу образуют физические величины, элементы базы и основные величины идентичны. Важно отметить следующее положение теории групп все базовые системы (базы) равноценны друг другу и каждая физическая величина ограниченной группы определяется с помощью любой базовой системы. Принципиально нет ни лучших, ни худших базовых систем. [c.20]

    Исходя из основных положений теории рециркуляции в комплексных системах, недостаточно оптимизировать локально отдельные агрегаты или даже целые регионы, состоящие либо из одной, либо из ряда однотипных установок и имеющие общие элементы. Оптимальная работа отдельно взятых составляющих химического комплекса будет коренным образом отличаться от оптимальной работы их в условиях, когда они испытывают влияние сопряженной работы других установок. Поэтому определение условий проведения отдельных процессов должно проводиться в соответствии с лаилучшими результатами работы всего комплекса. Оптимизацию сложных комплексов теория рециркуляции осуществляет на базе математического описания всей совокупности и взаимосвязи химических, физических, физико-химических процессов и их экономики. Такая оптимизация названа глобальной созданы методы ее практического осуществления [55.......58]. [c.272]

    Указанные особенности координационной связи приводят к колоссальному многообразию структурных типов молекул координационных соединений, а также кристаллических структур твордых тел. Природа сил, обусловливающих координационную связь, лучше и правильнее всего описывается с помощью теории МО. Ввиду сложности структуры молекул и ионов координационных соединений прямые расчеты не всегда возможны или требуют при их проведении многих упрощающих допущений. Это вызывает особую необходимость в развитии полуколичественных теоретических представлений, позволяющих предсказывать устойчивость и свойстиа координационных соединений. Кроме качественной теории МО, в химии координационных соединений получила широкое распространение теория кристаллического ноля, которая, хотя и основывается на упрощенной физической модели строения, позволяет система-гически описать многие важные свойства комплексов. Теории ОЭПВО и гибридизация АО в химии координационных соединений пе нашли сголь широкого применения, как в случае соединений непереходньсх элементов. [c.409]

    Такую постановку вопроса в 30—40-е годы ХУП в. необходимо признать актуальной и оригинальной, ибо в системе Шталя проблема отыскания начал , или элементов , считалась маловажной, второстепенной задачей химии. Сам М. В. Ломоносов специальных исследований, направленных на отыскание таких начал , не проводил, так как основные его помыслы были направлены на разработку целостной атомистической теории, приложимой ко всем химическим и физическим явлениям. Ему принадлежит заслуга обоснования механической теории теплоты. Мысль, что теплота есть движение малых частиц веществ, вероятно, впервые была выска- [c.118]

    Тем не менее даже на этом этапе развнтия периодического закона оставался неясным физический смысл явления периодичности, т. е. констатировался сам факт периодического изменения свойств элементов, но не было понятно, почему при монотонном возрастании атомного номера свойства элементов меняются не монотонно, а периодически. И только на третье.м этапе, с развитием квантово-механической теории электронного строения атома, стало возможным вскрыть физический смысл периодического закона. Выяснилось, что сущность периодичности заключается в существовании предельной емкости электронных слоев и в периодическом возобновлении сходных валентных электронных конфигураций на все более высоком энергетическом уровне в результате наложения квантово-механического принципа Паули на классический принцип наименьшей энергии в атомной системе. [c.7]

    Периодическая система Менделеева является естественной си-стематикой атомов химических элементов. Химический элемент — совокупность атомов с одинаковым зарядом ядра и электронной оболочкой. Закономерности изменения свойств химических элементов определяются Периодическим законом. Учение о строении атома вскрыло физический смысл Периодического закона. Оказалось, что периодичность изменения свойств элементов и их соединений зависит от периодически повторяющейся сходной структуры электронной оболочки их атомов. Химические и некоторые физические свойства зависят от структуры электронной оболочки, особенно ее наружных слоев. Поэтому Периодическая система является научной основой изучения важнейших свойств элементов и их соединений кислотно-основных, окислительно-восстановительных, каталитических, комилексообразовательных, полупроводниковых, металлохимических, кристаллохимических, радиохимических и т. п. Помимо теории строения атома Периодическая система элементов сыграла колоссальную роль в учении о естественной и искусственной радиоактивности, освобождении внутриядерной энергии. В настоящее [c.10]

    Методами физико-химического анализа установлено, что в системах элементов главных подгрупп третьей и пятой групп обнаруживаются химические соединения состава А" В (например, AlSb, GaAs, InSb и др.), являющиеся полупроводниками большого значения. Важную роль сыграл физико-химический анализ таких полупроводников, как германий и кремний с очень малым количеством легирующих примесей (см. рис. 52). Физико-химический анализ играет большую роль в металловедении, в синтезе интерметаллических и полупроводниковых соединений, в теории образования фаз переменного состава, в галургии и в других специальных областях физической химии. Громадную роль в создании и развитии физико-химического анализа сыграли работы Д. И. Менделеева, Д. П. Коновалова, Н. С. Курнако- [c.38]


Смотреть страницы где упоминается термин Элементы теории физических систем: [c.52]    [c.26]    [c.53]    [c.70]    [c.143]    [c.3]    [c.47]    [c.4]    [c.170]    [c.9]   
Смотреть главы в:

Основы физической химии биологических процессов -> Элементы теории физических систем




ПОИСК







© 2025 chem21.info Реклама на сайте