Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кинетической модели

    Определение кинетической модели [c.88]

    А,° ) равными половине значений Х° при данной температуре Х° = Х° = Х°/2. Полученные значения D° приведены в табл. 1. Их можно использовать для установления лимитирующей стадии процесса растворения кристаллов иодида цезия в н-амиловом спирте и определения кинетической модели этого процесса. С этой целью нужно рассчитать удельную скорость конвективной диффузии (плотность диффузионного потока, о) продуктов растворения в диффузионном пограничном слое растворяемого кристалла sl и сравнить ее с экспериментальной удельной скоростью растворения (vq) при определенных условиях. [c.44]


    Применимость определенного кинетического уравнения для практических целей связана не только с простой математической формой, но и с такой моделью процесса, которая отражала бы действительный его ход. Рассматривая превращение [c.262]

    Результаты вводят в вычислительную машину для разработки наиболее полной кинетической модели реакции, возможной при имеющихся данных, и определения соответствующих констант процесса в виде функций температуры, а также других переменных. [c.24]

    Эти уравнения вместе с графиками, аналогичными изображенным на рис. П-6 и П-7, для каждой температуры, при которой проводились статические опыты, дают предварительный график зависимости lg/г от 1/7 для каждого коэффициента. Если подобные расчеты выполнены для ряда отрезков времени в процессе реакции, то последуюш,ее непрерывное изменение полученных значений к есть определенный показатель расхождения с экспериментальными данными или, что более вероятно, с предложенной кинетической моделью. [c.32]

    Механизмом реакции в самом узком смысле этого слова называется совокупность элементарных стадий, задаваемых стехиометрической матрицей Г из уравнения (3.24). Кинетическая модель процесса — это механизм, в котором каждой элементарной стадии поставлено в соответствие определенное значение параметров модели (в первую очередь — коэффициентов скорости). [c.105]

    Эта реакция относится к числу незаслуженно обиженных . Вплоть до самого последнего времени она не включалась в кинетические модели, не привлекалась для объяснения тех или иных тонких особенностей явления в целом и почти неизвестно экспериментальных работ по определению к ь. Это объясняется тем, что ее считали реакцией обрыва. Причем поскольку обрыв, характеризующийся появлением в конечном цикле радикала НО , [c.273]

    Эта реакция всегда сильно сдвинута вправо и никогда не идет в сторону образования радикалов с хоть сколько-нибудь заметной скоростью, поэтому ее следует отнести к реакциям квадратичного обрыва. В литературе нет ни теоретических, ни экспериментальных работ по определению кц. Реакция редко вводилась в кинетические модели, и предполагалось, что она не является важной. Численное моделирование показало, однако, что это не совсем так. Из-за довольно высокого значения kts она оказа.лась относительно мощным каналом стока долгожителя HOj и ее термодинамическая qgs 0,04 и кинетическая по. HOj доля 725,HOj—0,10 довольно значительны. Особенно важную роль она играет в области между первым и вто рым пределами воспламенения, сильно затормаживая раз витие процесса в целом. Удовлетворительная степень аппроксимации механизма в этой области (б > 0,8) не может быть достигнута без учета реакции 25. [c.290]


    В [140] впервые был проведен анализ формы аналитической зависимости для и дан принципиальный метод ее определения. Рассматривалась простейшая кинетическая модель Г = 2, 3). Реакция 4 определяющей не [c.337]

    Возникает необходимость в более совершенных подходах к идентификации параметров пористой структуры катализаторов, установлению адекватных кинетических моделей адсорбции, определению оптимальных условий протекания процесса на зерне катализатора. Более совершенная стратегия принятия решений ориентирована на применение современных принципов автоматизации научных исследований в катализе, в частности на использование универсальной автоматизированной комбинированной установки для изучения свойств адсорбентов и катализаторов, рассматриваемых в гл. 4. [c.163]

    ПРИНЯТИЕ РЕШЕНИЙ ПРИ ОПРЕДЕЛЕНИИ ВЕРОЯТНОГО МЕХАНИЗМА ХИМИЧЕСКОЙ РЕАКЦИИ И ПОСТРОЕНИИ КИНЕТИЧЕСКОЙ МОДЕЛИ [c.170]

    Укрупненная типовая операционная ППР для определения вероятного механизма химической реакции и построения кинетической модели включает пять этапов 1) сбор априорной информации и предварительная обработка априорной информации с выяснением основных кинетических закономерностей 2) выдвижение системы гипотез о механизме реакции и построение кинетической модели для каждого механизма 3) построение стартового плана эксперимента с использованием имеющейся априорной информации и учетом выбранного критерия оптимальности затем проводятся предварительная проверка адекватности и оценка констант конкурирующих кинетических моделей, отбраковка неадекватных гипотез 4) проведение последовательно планируемых прецизионных экспериментов и уточнение оценок констант 5) дискриминация конкурирующих кинетических моделей с целью выбора одной наиболее соответствующей результатам эксперимента. [c.170]

    Детальная схема ППР для определения вероятного механизма химической реакции и построения кинетической модели представлена на рис. 4.1. [c.172]

    Алгоритм сжатия кинетических моделей. Информационная избыточность математического описания при его применении для каждого частного случая, соответствующего превращению заданного состава сырья, является довольно общей проблемой при моделировании сложных химических превращений, включающих большое число компонентов и элементарных стадий, для которых в ряде случаев оказывается, что при определенных условиях (когда только одна или несколько начальных концентраций компонентов реакционной смеси отличны от нуля) часть компонентов не принимает участия в химических превращениях и некоторые элементарные стадии не протекают, тогда как основное число арифметических операций, приходящихся на вычисление правых частей кинетических уравнений (4.12), сохраняются. Сформулированы и доказаны условия удаления из схемы реакций этих компонентов и стадий [48] пусть 1-ж компонент заданной схемы реакций удовлетворяет условиям 1) С ( о) = 0 2) т, п) Ф I Ут, п, где N — массив, кодирующий правые части элементарных стадий схемы реакций, тогда удаление из схемы реакций 1-го компонента с отвечающими ему стадиями не меняет решений кинетических уравнений с соответствующими начальными условиями. [c.208]

    Целью кинетического исследования в рассматриваемых системах является определение кинетических констант и возможных выходов изомеров. Традиционным методом использования кинетической модели для этого случая является решение системы дифференциальных уравнений (2.25). Общий способ такого решения методами матричной алгебры заключается в следующем. Будем искать ненулевое частное решение в виде  [c.30]

    Если исследуемая реакция является сложной и протекает как ряд параллельных и последовательных превращений, представляющих собой отдельные стадии всего химического процесса, и, если все параметры, включая порядки реакций, неизвестны, то расшифровка кинетической схемы процессов и определение значений кинетических параметров является сложной задачей. Этой проблеме в настоящее время посвящено много работ [2, 7, 8]. Здесь рассмотрим некоторые наиболее, на наш взгляд, существенные и близкие к предмету книги методы решения указанного типа задач. Последним можна дать наименование обратные задачи химической кинетики , поскольку в них по известному решению, найденному экспериментально, должны быть определены структура и параметры уравнений кинетической модели. [c.427]

    Как было показано выше, задача определения параметров кинетических моделей часто сводится к решению переопределенной системы линейных алгебраических уравнений (XI. 15) методом наименьших квадратов. Оценка искомого вектора х получается минимизацией квадратичного функционала [c.445]


    Исследования на микроуровне проводятся для В)сех типов реакторов. Они заключаются в определении механизма протекания химических реакций и построении кинетических моделей. Для этого необходимо выполнить следующее [9]. [c.81]

    На втором этапе проводится оценка параметров моделей, определяющих данный процесс. Сюда относятся оценка физико-химических, термодинамических и кинетических данных определение параметров моделей фазового равновесия, гидродинамической структуры потоков, кинетических моделей. Получение такой информации невозможно чисто расчетным путем, поэтому в той или иной степени используется экспериментальный материал (например, данные по свойствам, бинарному фазовому равновесию и т. д.). [c.94]

    Построение кинетической модели псевдоожиженного слоя сводится к определению явного вида интегралов столкновений J. и построению функций Ф,. . и Xij Для каждого вида взаимодействия. Результирующая система кинетических уравнений имеет вид [57 ] [c.163]

    Газ, сжатый до давления Р(, на входе в аппарат, проходя через распределительное устройство (подающее устье) приобретает определенную кинетическую энергию. Моделью процессов в подающем устье служит следующий фрагмент диаграммы связи  [c.257]

    В настояш,ей работе математическая модель процесса будет предполагаться известной. Задача состоит в определении неизвестных постоянных параметров на основании экспериментальных данных — это константы скоростей в кинетической модели химической реакции, параметры равновесия, тепломассообмена, гидравлического сопротивления и т. д. [c.84]

    Рассмотрим в качестве примера определение параметров кинетической модели реакции дегидрирования н-бутиленов на катализаторе 11М-2206 [14, 15]. Кинетическая модель имеет вид [c.89]

    В основном кинетические модели ректификации представляют собой эмпирические зависимости, справедливые для соответствующих систем и условий. Их нельзя применять при прогнозировании, а при переходе к аппаратам иного размера и режима они обусловливают значительные ошибки в определении эффективности разделения. [c.141]

    В условиях естественного хранения топлив окислительные процессы идут столь медленно, что их скорость измерить не удается. Поэтому приближенная количественная оценка химических изменений в топливах за определенный срок хранения возможна только исходя из экстраполяционной кинетической модели окисления. С этой целью проводят оценку скорости окисления в условиях естественного хранения (60, 20 и 0°С) при допущении, что аррениусовский ход кинетических параметров окисления сохраняется и для интервала 60—0 С [82]. С понижением температуры скорость окисления резко падает, но даже при 60°С она ниже тех значений, которые могли быть измерены современными методами [1,8, 66, 82]. [c.75]

    Проверка кинетических моделей. При определении механизма реакции возникают две трудности. Во-первых, реакция может [c.37]

    Проточный метод, позволяющий получать информацию о скорости реакции в интегральной форме, не дает возможности однозначно судить о структуре кинетической модели. Интегральная форма модели мало чувствительна к значительным изменениям ее дифференциальной формы. Поэтому дальнейшее изложение относится только к планированию эксперимента для безградиентного метода определения скорости химических реакций. [c.467]

    Кинетическая модель, построенная на базе изучения механизма процесса и фундаментальных знаний о скоростях химических превращений, при последующих этапах моделирования является основой для нахождения границ кинетических областей, критических условий перехода, определения теоретических оптимальных режимов и устойчивости работы реакторов и т, д. В связи с этим при описании дальнейщих этапов моделирования использованы кинетические закономерности, выведенные на основе анализа механизма каждого химико-технологического процесса. [c.472]

    Одной из основных задач математического моделирования химических процессов является построение кинетической модели и определение констант скоростей реакции. В случае, если в эксперименте измеряются концентрации всех веществ, задача определения констант успешно решается с использованием методов линейного программирования. В случае гетерогенных каталитических реакций измерение концентраций промежуточных веществ, как правило, в настоящее время не проводится. Для восполнения этого пробела применяется метод квазистационарности. [c.87]

    Заключительный этап построения кинетической модели состоит [144] в определении кинетических констант скоростей реакций для найденной модели на основе экспериментальных данных р скорости химических превращений. Решение обратной задачи тесно связано с формулировкой прямой кинетической задачи, т. е. разработкой математического описания для расчета состава реакционной смеси и скоростей реакций на основе кинетической модели (4.6). [c.67]

    Таким образом, разработанная кинетическая модель процесса окислительной регенерации (4.6) является достаточно надежной теоретически обоснованной моделью. На дальнейших этапах моделирования данная модель может быть с успехом использована для решения различных задач определения границ кинетической области, критических условий перехода, теоретических оптимальных условий и т.п. [c.70]

    Для регенераторов с неподвижным слоем катализатора основная задача-обобщение и систематизация существующих подходов для разработки математической модели и на их базе-определение условий, при которых становится корректным то или иное упрощение полной модели. Для регенераторов со сплошным движущимся слоем необходима Дальнейшая апробация двухфазной диффузионной модели при расчетах режимов работы аппаратов различной конструкции одно-, двух- и трехзонных. Для регенераторов с псевдоожиженным слоем приемлемые варианты модели практически необходимо разработать заново. Надежным фундаментом для такой разработки является кинетическая модель процесса и модель выжига на уровне зерна. Однако в любом случае разработка должна быть ориентирована на двухфазные модели, т. е. на раздельный учет теплового и материального балансов для твердой фазы (катализатора) и газового потока. По-видимому, иные подходы вряд ли будут успешными для такого существенно нестационарного процесса, как окислительная регенерация катализаторов. [c.97]

    Кинетическая модель в ее строгом определении должна представлять собою систему дифференциальных уравнений, включая численное значение их констант, описывающую скорости каждой из составляющих процесс химических реакций и позволяющую рассчитать состояние реагирующей системы в любой момент времени или координаты реактора при наличии заданных начальных условий реакции. Однако. для превращения многокомпонентных смесей сложного состава, каков каталитический риформинг, выполнение этих условий практически нереально. Обусловливающие это трудности относятся прежде всего к решению обратной задачи построения модели. [c.190]

    Определение кинетических моделей процессов глубокого окисления дает возможность математически моделировать промьпыленный реактор. Таких работ применительно к очистке окружающей среды от примесей отходящих газов промышленных производств в литературе очено мало. Для процессов [c.136]

    В дальнейшем в работе [104] был предложен и проверен метод определения лимитирующей стадии ряда параллельно-последовательных каталитических реакций. Метод заключается в сравнении наблюдаемого распределения О-атомов в продуктах - реакции и состава этих продуктов с теоретически рассчитанными для того или иного механизма реакции, проводимой в атмосфере Ог либо в смеси Нг и Ог. Возможности этого метода продемонстрированы на примере реакции дейтеролиза гем-диметилциклопропана в присутствии пленок Р1, Р(1, 1г и тех же металлов, нанесенных на АЬОз. Оказалось, что только две из семи обсуждаемых моделей согласуются с экспериментальными результатами по распределению продуктов реакции. Наибольшее предпочтение авторы отдают механизму, при котором происходит одновременное присоединение двух Н-атомов к адсорбированной на катализаторе молекуле гем-диметилциклопропана. Для уточнения предложенной [104] кинетической модели [c.107]

    К тесному сотрудничеству химиков-исследователей и системотехников и лучшему использованию возможностей вычислительных машин при определении механизма реакции и кинетической модели процессов должны привести следующие этапы работы  [c.23]

    Метод оценки параметров в нелинейно параметризованных моделях. Определение точечных оценок максимального правдоподобия, байесовских, минимаксных и т. п., еще не гарантирует необходимой для исследователя точности. Причем вся информация, характеризующая статистические свойства 0, сосредоточена в апостериорной плотности р (0 1 у) или в выборочной р (0) плотности распределения параметров. Однако построение точной выборочной плотности распределения 0 возможно только для линейно параметризованных моделей, а подавляющее большинство кинетических моделей (как и моделей физико-химических систем) нелинейно параметризованы. Линеаризация по 0 нелинейных моделей не обеспечивает достаточно хорошей аппроксимации нелинейных (даже репараметризованных) линеаризованными. Отсюда, следует, что выборочная плотность распределения р (0), соответствующая линеаризованной модели, будет существенно отличаться от р (0), соответствующей нелинейной модели. Причем это расхождение (по крайней мере, для небольших выборок) может быть столь существенно, что приведет к получению абсурдных результатов. [c.184]

    Предлагается новый метод определения р (0), свободный от указанных недостатков и не использующий в процессе принятия решения о численных значениях 0 процедуру линеаризации исходной кинетической модели. Суть метода состоит в построении выборочной плотности распределения параметров нелинейной модели в виде разложения по биортогональной системе полиномов Чебышева—Эрмита. Причем необходимые для расчетов коэффициентов разложения выборочные реализации случайного вектора наблюдений генерируются с использованием метода статистиче ского моделирования [24, 25]. [c.184]

    Однако структура кинетических моделей, как правило, такова, что оценки кинетических констант сильно коррелируют между собой. Это ведет к тому, что функции меры, характеризующие степень совпадения экспериментальных и расчетных данных, обнаруживают в пространстве параметров в окрестности точки минимума наличие оврагов, затрудняющих определение точечных оценок констант. Детерминантные критерии значительно уменьшают объем доверительного эллипсоида, не изменяя коэффициентов корреляций и, следовательно, не исправляя овражной ситуации. В этом отношении критерий формы, максимизируюпщй наименьшее собственное значение информационной матрицы Л/(е), представляется более предпочтительным, так как стремится придать доверительной области сферичность посредством минимизации длины большой полуоси доверительного эллипсоида. [c.189]

    Система машинной обработки кинетической информации (СМОКИ) представляет собой программное обеспечение для автоматизированного построения по заданному механизму реакций модели, описывающей имеющийся экспериментальный материал, и для извлечения из экспериментальных данных максимально возможной информации о кинетических параметрах исследуемого механизма [48, 49]. Система ориентирована на многомерные кинетические модели и определение большого количества кинетических параметров (до 200). [c.204]

    В общем случае проверка адекватности модели представляет собой сложную физическую задачу. Как было показано выше, при составленпп физико-химической модели реактора необходимо сделать допущение об определенном характере элементарных физических процессов, о факторе их усреднения, о влиянии на них конструкции аппарата и параметров процесса, о химизме процесса п, наконец, о хара1 тере взаимного влияния физических и химических процессов. В определенных условиях любое из этих допущений может явиться источником ошибок. При этом нельзя забывать, что только кинетическая модель процесса не зависит от конструкции аппарата и параметров процесса, а все физические процессы связаны с конкретными параметрами процесса и конкретной конструкцией аппарата. Поэтому необходимо четкое представление о том, корректность как их допущений может быть проверена прп постановке определенных 1 онкретных опытов и сопоставлении их результатов с результатами математического эксперимента. [c.24]


Библиография для Определение кинетической модели: [c.90]   
Смотреть страницы где упоминается термин Определение кинетической модели: [c.279]    [c.442]    [c.106]    [c.102]   
Смотреть главы в:

Процессы и аппараты органического синтеза и биохимической технологии -> Определение кинетической модели




ПОИСК





Смотрите так же термины и статьи:

Модели определение

Модель кинетическая

Принятие решений при определении вероятного механизма химической реакции и построении кинетической модели

Спивак. Детальный анализ применения методов линейного программирования при определении параметров кинетической модели



© 2025 chem21.info Реклама на сайте