Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесное молекулярно-массовое распределение

    Обратимые процессы полимеризации и поликонденсации (равновесные молекулярно-массовые распределения). ............ ........297 [c.143]

    Обратимые процессы полимеризации и поликонденсации (равновесные молекулярно-массовые распределения). При ионной полимеризации и поликонденсации могут протекать обратимые процессы, приводящие к равновесному М.-м. р. полимеров, к-рое соответствует минимуму химич. потенциала полимера в данных условиях. К таким обратимым процессам относятся, напр., полимеризация с образованием живущих полимеров и их деполимеризация. В реакции с уча- [c.147]


    Полимеры, образующиеся при анионной полимеризации е-кап-ролактама при высокой температуре, имеют вначале высокие молекулярные массы, которые при длительном нагревании реакционной смеси уменьшаются и наконец достигают равновесного значения. Это изменение молекулярно-массового распределения обусловлено реакцией переамидирования между растущими и мертвыми цепями полиамида. [c.167]

    Процесс фазового разделения, индуцированного химической реакцией, который является важнейшим фактором, определяющим структуру, морфологию и свойства конечного полимера, рассматривается в [37, 38], где отмечается, что описание его возможно с помощью классической теории Флори-Хаггинса. Однако, предлагаемые уравнения справедливы для равновесных условий и не учитывают таких факторов реальных олигомерных систем, как длина цепи, молекулярно-массовое распределение, полидисперсность, зависимость параметра взаимодействия X от концентрации раствора при испарении растворителя. Отклонения критических параметров системы полимер - растворитель от классической теории Флори-Хаггинса под влиянием давления и температуры, флуктуационных изменений при большом количестве звеньев в цепи, изучены также в работах [39, 40]. [c.231]

    Обычно эксперимент в ГПХ проводится в условиях, близких к равновесным, когда действие диффузионного механизма на разделение макромолекул становится несущественным. Если к тому же в качестве сорбента используют пористые стекла, силикагели или стирогели, то отпадает и эксклюзионный механизм. В этих условиях ответственным за разделение макромолекул становится только молекулярно-ситовой механизм, и интерпретация хроматограмм в молекулярно-массовые распределения полимеров может успешно осуществляться в соответствии с принципом универсальной калибровки Бенуа [54]. [c.123]

    Влияние степени полимеризации па равновесную концентрацию мономера и молекулярно-массовое распределение в условиях равновесия......615 [c.303]

    В. п. должны иметь узкое молекулярно-массовое распределение. С ростом полидисперсности полимера число коротких молекул в полимере увеличивается, что обусловливает уменьшение межмолекулярного взаимодействия. В результате облегчается перевод полимеров в р-р или расплав, а также пластификационное вытягивание волокон, но затрудняется ориентация макромолекул в волокне. При этом качество волокон снижается. Полимеры, получаемые равновесной поликонденсацией, отличаются более узким молекулярно-массовым распределением по сравнению с полимерами, получаемыми радикальной полимеризацией. Поэтому поликонденсационные полимеры более пригодны для создания высокопрочных волокон. [c.254]


    Эффективность Р. с. оценивают радиационно-химич. выходом — числом поперечных связей, образующихся в полимере при поглощении 100 эв энергии излучения. Для большинства способных к сшиванию полимеров G( =l—4. Скорость P. . определяется характером молекулярно-массового распределения она наиболее высока для монодисперсных полимеров. Степень Р. с. оценивают по массе гель-фракции — доле полимера, оставшейся после экстракции растворителем не вошедших в сетку макромолекул (золь-фракции). Одновременно с образованием поперечных связей при облучении происходит деструкция макромолекул. Полимеры, имеющие значение /aчисло актов соответственно разрыва связей и образования поперечных связей), условно относят к преимущественно сшивающимся, а при /a>l,0 — к преимущественно деструктирующим. Плотность поперечных связей, определяемая значением средней мол. массы отрезка макро-цепи, заключенного между узлами сетки, в соответствии с кинетич. теорией высокоэластичности м. б. оценена на основании данных о равновесном напряи нии или набухании (см. Трехмерные полимеры, Вулканизационная сетка). [c.128]

    Влияние степени полимеризации на равновесную кош ентрацию мономера и молекулярно-массовое распределение в условиях равновесия. В условиях равновесия присоединение молекул мономера к полимерным цепям должно происходить таким образом, чтобы каждая макромолекула из п звеньев мономера находилась в равновесии с макромолекулой из (и- -1) звеньев. Предполагается, что Кр не зависит от длины цепи. Тогда  [c.308]

    Установление равновесия в адсорбционном слое протекает медленнее оно может длиться часы или даже сутки. Это время в большей мере зависит от химической природы адсорбента и адсорбата, термодинамического качества растворителя, молекулярно-массового распределения полимера и др. Влияние последнего фактора обусловлено возможностью перераспределения адсорбированных макромолекул во времени — вытеснением менее крупных молекул более крупными. Экспериментально указанные два процесса трудно различимы, так как измеряемые на опыте зависимости величин адсорбции и толщин адсорбционных слоев в суммарном виде отражают кинетические зависимости как диффузии макромолекул к поверхности, так и установления равновесной структуры адсорбционного слоя. [c.40]

    ВЛИЯНИЕ СТЕПЕНИ ПОЛИМЕРИЗАЦИИ НА РАВНОВЕСНУЮ КОНЦЕНТРАЦИЮ МОНОМЕРА И МОЛЕКУЛЯРНО-МАССОВОЕ РАСПРЕДЕЛЕНИЕ В УСЛОВИЯХ РАВНОВЕСИЯ [c.101]

    Состав расплава, поступающего на фильеру, не является равновесным ни по содержанию низкомолекулярных соединений, ни по молекулярно-массовому распределению, поскольку за короткое время пребывания его в блоке формования равновесие не наступает. Следовательно, свойства получаемого расплава могут быть одинаковыми только при стандартности крошки, строгом,соблюдении условий плавления и оптимальной продолжительности нахождения расплава во всех прядильных головках [25]. [c.117]

    Главной областью применения ситовой хроматографии остается определение молекулярно-массового распределения полимеров. Прт этом предполагается, что молекулы пробы не адсорбируются на поверхности носителя и что между стоящим и движущимся элюентом моментально устанавливается равновесное распределение молекул пробы [11]. [c.210]

    Возможность обратимых деструктивных и обменных реакций в процессе равновесной поликонденсации обусловливает наиболее вероятное молекулярно-массовое распределение образующихся полимеров, т. е. для них коэффициент полидисперсности  [c.212]

    Вначале имеет смысл рассмотреть вопрос о том, каким образом конфигурация (т. е. первичная структура) полимерной цепочки может оказывать влияние на процесс кристаллизации. Наиболее важной характеристикой первичной структуры макромолекулы является, по-видимому, молекулярная масса, а также ширина молеку-лярно-массового распределения полимера. Как всегда, начнем анализ с простого случая. В этом смысле благоприятным объектом является полиэтилен (или полиметилен), который обладает наиболее простым молекулярным строением и который, кроме того, привлек внимание большого числа исследователей после первых опытов по получению полимерных монокристаллов. К сожалению, серьезным недостатком полиэтилена является то обстоятельство, что блочные образцы обладают чрезвычайно широким распределением по молекулярным массам. На это обращал неоднократно внимание автор при обсуждении зависимости равновесной температуры плавления от молекулярной массы [1], возможности фракционирования при кристаллизации [2—6] и т. д. Ниже будет обсуждаться проблема образования кристаллов с выпрямленными цепями в случае полимеров низкой молекулярной массы с использованием результатов, полученных в указанных работах. [c.199]

    Рассмотрение более сложной модели полимерной цепи необходимо по двум причинам. Во-первых, [п] и [т ] определяются не только вторыми, а всеми моментами функции распределения. Корректное описание равновесных свойств цепных молекул по четвертым и более высоким моментам невозможно в рамках квазиупругого потенциала. Во-вторых, введение более строгой модели позволяет проанализировать влияние таких факторов, как объемные эффекты, механизм гибкости и т. д. на молекулярно-массовую зависимость [л] / [т ]. [c.199]


    Хотя такие реакции не влияют ни на число свободных функциональных групп, ни на число молекул (среднечисловая степень полимеризации остается постоянной), они могут заметно изменять среднемассовую степень полимеризации, а следовательно, и моле-ку/шно массовое распределение. Например, две макромолекулы одтп размер могут взаимодействовать друг с другом с образованием одной очень длинной и одной очень короткой макромолекулы и наоборот, две различные макромолекулы могут реагировать, давая две макромолекулы одной длины. Независимо от исходного распределения в таких обменных реакциях в каждом случае устанавливается состояние равновесия, в условиях которого скорости образования и разложения равны. Это приводит к равновесному молекулярно-массовому распределению, которое формально согласуется с распределением, получаемым в результате случайной поликонденсации. Поэтому при обычной поликонденсации обменные реакции не влияют на молекулярно-массовое распределение. Однако при смешении высоко- и низкомолекулярных полиэфиров в расплавленном состоянии вскоре достигается равновесное молекулярно-массовое распределение вместо двух различных максимумов вначале появляется один. Обменные реакции такого типа наблюдали также на полиамидах, полисилокса-нах и полиангидридах. [c.193]

    П. ц. с разрывом (за исключением тех случаев, когда образуются макроциклы) не ириводит к 1ьзменению среднечнслепной степени полимеризации, но изменяет молекуЪ1ярно-массовое распределение полимера. Такие реакции обратимы и стремятся привести линейные и Ц1п лич. макромолекулы к равновесному молекулярно-массовому распределению. Кроме того, эти реакции [c.290]

    Молекулярно-массовое распределение жидких тиоколов определяется реакциями межцепного обмена. Процесс получения жидких полимеров с концевыми 5Н-группами, осуществляемый химической деструкцией 5—5-связей и протекающий по статистическому закону, должен привести к равновесному распределению по молекулярным массам, а для линейных полимеров — к наиболее вероятному распределению Флори. Однако, в связи с тем, что этот процесс осуществляется на границе раздела фаз, распределение может быть случайным и равновесное распределение достигается лищь в результате реакций межцепного обмена, присущих этому классу полимеров [10, с. 477]. [c.560]

    В табл. 2.4 в качестве примера приведены данные по деструкции полиарилата фенолфлуореном, хлорангидридом терефталевой кислоты и более низкомолекулярным полиарилатом того же строения. Полученные результаты показывают, что, несмотря на сравнительно высокую хемостойкость полиарилатов в условиях, соответствующих их синтезу, они подвержены алкоголизу, фенолизу, обмену за счет хлорангидридной функции [55, 57]. Интересно, что во всех случаях наблюдается увеличение начальных скоростей деструкции полиарилата в присутствии хлористого водорода по сравнению со скоростями деструкции, проводимой в инертной атмосфере. Поскольку полиарилат, как было отмечено выше, не деструктируется хлористым водородом - низкомолекулярным продуктом поликонденсации, такое ускорение может быть отнесено на счет его каталитического действия. Изучение фракционного состава поли-9,9-бис(4-гидроксифенил)флу-орентерефталата и его изменения в процессе протекания отмеченных выше различных деструктивных и обменных реакций показало, что во всех случаях проявляется тенденция к сужению молекулярно-массового распределения (ММР). Это позволяет считать, что оно обусловлено как переходом системы в новое равновесное состояние с меньшей молекулярной массой, так и большей склонностью больших молекул к деструкции [57]. [c.12]

    Кристаллизация полимеров, в отличие от кристаллизации низкомолекулярных веш еств, проходит обычно не полностью, и при этом образуются метастабиль-пые кристаллы. При нагревании они плавятся в некотором интервале температур (АГпл иногда достигает десятков градусов). На практике верхнюю границу этого интервала принимают за экспериментальную температуру плавления полимеров. Равновесная температура плавления Г°пл обычно ниже экспериментальной Тил примерно на 5—20 °С. Наблюдаемые значения Тил и АГпл зависят от химической природы макромолекул, молекулярно-массового распределения, условий кристаллизации. В интервале плавления происходят процессы так называемого частичного плавления, связанные с постепенным расплавлением наиболее дефектных граней кристаллитов и постадийным плавлением кристаллитов разных размеров и различной степени дефектности. [c.135]

    Эти результаты свидетельствуют, с одной стороны, о важной роли концов цепей при кристаллизации низкомолекулярных образцов и, с другой стороны, о том, что термодинамически наиболее устойчивой формой кристалла полимера является такая, в которой концы макромолекул локализованы на поверхности кристалла (рис. П1.40). На основании этих результатов Линденмейер [30] развил равновесную теорию кристаллизации, которая учитывает влияние концевых групп цепи. Расчет плотности свободной энергии кристалла, выполненный с помощью электронно-вычислительной машины, показал, что в случае монодисперсных образцов (по молекулярной массе) кривая свободной энергии проходит через минимумы, соответствующие 1, 1/2, 1/3,. .. и т. д. длины полностью вытянутой макромолекулы, в то время как для образцов с широким молекулярно-массовым распределением наблюдается лишь один минимум при определенном значении средней молекулярной массы. Работа Линденмейера вносит существенный новый вклад в равновесную теорию кристаллизации полимеров и поэтому заслуживает внимания, однако ее истинная ценность, вероятно, станет более очевидной в будущем. [c.197]

    При к < к2 процесс протекает нестационарно и ур-ние (И) соблюдается лишь после завершения инициирования. В таких случаях образуются полимеры с широким молекулярно-массовым распределением. Ассоциация обычно обусловливает дробный порядок реакции по инициатору и растущим цепям, т. к. ассоциированные формы, как правило, обладают низкой реакционной способностью и в равновесных системах (МеК) пМеВ (12а) развитие процесса практически целиком обеспечивается мономерной (МеК) или менее ассоциированной формой. В частности, известны факты, в соответствии с к-рыми кинетически эффективными частицами при реакциях литийалкилов являются их димерные формы (взаимодействие литийбутила с бутилброми-дом в присутствии оснований Льюиса, полимеризация винилхлорида под действием литийбутила и др.). В этих условиях кажущиеся константы скоростей элементарных актов включают в себя соответствующие константы равновесия. Подобные черты свойственны многим процессам полимеризации, протекающим в неполярных средах под действием литийалкилов, где растущие цепи различных полимеров (стирола, бутадиена, изопрена) обычно существуют в виде ассоциатов, содержащих 2 молекулы. Дополнительные осложнения возникают из-за образования перекрестных ассоциатов растущих цепей с инициатором. Образование ассоциатов обнаружено и при полимеризации с использованием в качестве катализаторов калийорганических соединений в углеводородной среде. [c.74]

    О том, насколько длителен процесс установления равновесия, можно судить по взаимодействию древесины с полиэтиленгликоля-ми (молекулярная масса от 200 до 60 000), Хотя количество адсорбированного полиэтиленгликоля достигает равновесного значения через 50 ч, его молекулярно-массовое распределение существенно меняется даже через 960 ч [132]. Еще больше времени (240 сут при20°С) требуется для установления равновесия адсорбции полиакриловой кислоты на полиамиде. Пористая структура адсорбента может препятствовать установлению равновесия, если размер пор таков, что они недоступны для высокомолекулярных фракций. Это показано, например, для адсорбции полнвинилацета-та на древесине [133]. Скорость десорбции с ростом молекулярной массы снижается [134]. В ряде случаев адсорбция тех или иных фракций начинает преобладать только после определенной степени покрытия субстрата [135]. [c.29]

    Молекулярная масса и молекулярно-массовое распределение (ММР) продукта по.чиконденсации оиреде.1яется равновесным состоянием системы. До достижения равновесия ММР непрерывно изменяется в результате протекания различных реакций пе-рераспреде.чения цепей. При этом наряду с реакциями конденсации протекают реакции деструкции под влиянием выделяющегося побочного низкомолекулярного вещества и, как правило, с участием исходных компонентов. Например, под действием исходных компонентов — кислоты или спирта или при взаимодействии концевых групп макромолекул, а также в результате обменной реакции эфирных групп могут протекать реакции пе-реэтерификации. При действии кислоты протекают реакции ацидолиза  [c.78]

    Молекулярно-массовое распределение поликапроамида, полученного в результате анионной полимеризации, было изучено методом скоростной седиментации в ультрацентрифуге [166]. В результате этих исследований было показано, что равновесное распределение поликапроамида по молекулярной массе соответствует теоретическому распределению Флори и отношение среднемассовой молекулярной массы к среднечисловой равно 2,05. Экспериментальная кривая молекулярномассового распределения полидодеканамида, расфракционированного на 50 фракций, также соответствует теоретической кривой [188]. По-видимому, теоретическое распределение по Флори — Шульцу справедливо и для поликапроамида. Противоречивость имеющихся в литературе данных по молекулярно-массовому распределению полиамидов обусловлена несовершенством методик фракционирования в связи со значительными трудностями четкого разделения полиамидов на узкие фракции при осаждении этих кристаллических полимеров из раствора. Используя метод фракционирования полиамидов путем распределения полимера между двумя жидкими фазами в смеси фенол — вода или крезол — бензин, удается получить большое число фракций полиамида— до 30—60. Разумеется [180], чем меньше число фракций полимера получено в результате фракционирования, тем сильнее отличается дифференциальная кривая молекулярно-массового распределения полиамида от нормального распределения по Флори — Шульцу. [c.68]

    Теоретически, поскольку макромолекулы распределяются в кювете центрифуги в соответствии со своими молекулярными размерами, метод равновесной седиментащш может быть использован для получения молекулярно-массового распределения. Однако эта процедура очень трудоемка и требует много времени. [c.321]


Смотреть страницы где упоминается термин Равновесное молекулярно-массовое распределение: [c.149]    [c.288]    [c.335]    [c.111]    [c.366]    [c.257]    [c.111]    [c.44]    [c.94]    [c.63]   
Смотреть главы в:

Кинетика полимеризационных процессов -> Равновесное молекулярно-массовое распределение




ПОИСК





Смотрите так же термины и статьи:

Массовая

Молекулярно-массовое распределение

Молекулярный вес распределение



© 2024 chem21.info Реклама на сайте