Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование химически связей

    Совокупность химически связанных атомов (например, молекула, кристалл) представляет собой сложную систему атомных ядер и электронов. В образовании химической связи между ними из всех существующих в природе сил существенны только электростатические силы, т. е. силы взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. [c.41]

    Таким образом, образование химической связи в Нз обусловлено тем, что электрон двигается около двух ядер между ядрами появляется область с высокой плотностью отрицательного заряда, который стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию системы, а следовательно, и полную энергию системы — возникает химическая связь.  [c.46]


    Валентность. Как известно, под валентностью подразумевается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента. Мерой валентности поэтому является число химических связей, образуемых данным атомом с другими атомами. Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле — мера его способности) к образованию химических связей. В представлении метода валентных связей численное значение валентности соответствует числу ковалентных связей, которые образуют атом. [c.66]

    Атом серы 5, как и атом кислорода, имеет шесть валентных электронов (35 3/) ). Сера — типичный неметаллический элемент. По электроотрицательности (ЭО = 2,5) она уступает только галогенам, кислороду, азоту. Наиболее устойчивы четные степени окисления серы (—2, +2, -j-4 и +6), что объясняется участием в образовании химических связей двух непарных электронов, а также одной или двух электронных пар  [c.322]

    Металлические и металлоподобные соединения. Порошки титана, циркония и гафния поглощают водород, кислород и азот. При этом растворенные неметаллы переходят в атомарное состояние и принимают участие в образовании химической связи. Наряду с сильно делокализованной (металлической) возникает локализованная (ковалентная) связь. Благодаря этому система приобретает повышенную твердость и хрупкость. Способность Т1, Zг и Н1 поглощать газы используется для получения глубокого вакуума, удаления газов из сплав эв и т. д. [c.531]

    Характерная для ниобия и тантала тенденция к использованию при образовании химической связи всех своих валентных электронов обычно осуществляется за счет перехода их в высшую степень окисления +5. При низких же степенях окисления эта тенденция осуществляется за счет образования связей М—М (см. сл. главу). [c.544]

    Из органической химии известно, что образование химических связей обусловлено короткодействующими силами. Это дает основание для утверждения о протекании хемосорбции лишь в монослое. Хемосорбция — обычно довольно медленный процесс, протекающий вслед за физической адсорбцией. При низких температурах скорость хемосорбции может быть настолько малой, что становится заметной лишь физическая адсорбция. И наоборот, при высокой температуре физическая адсорбция почти незаметна и происходит в основном хемосорбция. [c.184]


    Адсорбция обусловлена притяжением между молекулами поверхности твердого тела (адсорбента) и молекулами жидкости или газа (адсорбата). Экспериментально обнаружены два типа адсорбции, у которых интенсивность притяжения отличается приблизительно на порядок. В некоторых случаях притяжение сравнительно невелико и имеет ту же природу, что и притяжение между любыми двумя молекулами, т. е. происходит физическая адсорбция. В других случаях силы притяжения родственны силам, проявляющимся при образовании химических связей такай процесс называют химической адсорбцией, или хемосорбцией. Как будет показано ниже, обоим этим процессам свойственны и другие отличия. [c.204]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

Рис. 36. Схема образования химических связей в молекула воды. Рис. 36. <a href="/info/18430">Схема образования химических связей</a> в молекула воды.
    Поэтому для участия в образовании химических связей атом бериллия должен перейти в возбужденное состояние (2 2р ) 5 [c.136]

    В молекулах элементов второго периода МО образуются в результате взаимодействия атомных 25- и 2р-орбиталей участие внутренних 15-электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 49 приведена энергетическая схема образования молекулы г здесь имеются два связывающих электрона, что соответствует образованию простой связи. В молекуле же Веа число связывающих и разрыхляющих электронов одинаково, так что эта молекула, подобно молекуле Нез, [c.147]

    В молекуле кислорода О2 (рис. 52) в образовании химических связей принимают участие ио четыре 2/ -электрона каждого атома всего, следовательно, на МО должны перейти восемь электронов. [c.148]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]

    В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и [c.647]

    Большинство элементов рассматриваемой подгруппы имеют два электрона в наружном электронном слое атома все они представляют собой металлы. Кроме наружных электронов, в образовании химических связей принимают участие также электроны из предыдущего недостроенного слоя. Для этих элементов характерны степени окисленности, равные 2, 3, 4. Более высокие степени окисленности проявляются реже. [c.670]

    Суть химических реакций заключается в разрушении и образовании химических связей, в результате чего происходит перегруппировка атомов и образование новых соединений. Свойства этих новых соединений отличаются от свойств исходных веществ. Причем отличаются не только их физические свойства, но и те химические реакции, в которые они вступают. Другими словами, химические свойства этих новых соединений отличаются от химических свойств исходных веществ. [c.40]


    Электронные формулы Химические формулы, в которых точками обозначают внешние электроны каждого атома, участвующие в образовании химических связей [c.549]

Рис. 12-1. Образование химической связи в молекуле Н2. а-плотность вероятности обнаружения электрона на Ь-орбитали атома водорода б-сферическая поверхность, охватывающая область, в которой вероятность обнаружить электрон составляет 99% в-два далеко удаленных друг от друга атома водорода, не оказывающих влияния один на другой г-сближение атомов каждое Рис. 12-1. <a href="/info/1767901">Образование химической связи</a> в молекуле Н2. а-плотность <a href="/info/940097">вероятности обнаружения электрона</a> на Ь-орбитали <a href="/info/1117693">атома водорода</a> б-<a href="/info/96294">сферическая поверхность</a>, охватывающая область, в которой вероятность <a href="/info/1497951">обнаружить электрон</a> составляет 99% в-два далеко <a href="/info/761110">удаленных друг</a> от друга <a href="/info/1117693">атома водорода</a>, не оказывающих <a href="/info/1834149">влияния один</a> на другой г-сближение атомов каждое
    В рассмотренном выще примере с НС1 приведенные численные данные создают впечатление, что электроны должны смещаться от атома С1 к атому Н, поскольку первая энергия ионизации у водорода (1310 кДж моль больще, чем у хлора (1255 кДж моль ). Однако на образование химической связи влияют не только энергии ионизации соединяющихся атомов, но также и сродство к электрону каждого из них. Сродство к электрону у С1 (356 кДж моль настолько выще, чем у Н (67 кДж моль ), что предсказание, основанное только на сопоставлении энергий ионизации, оказывается прямо противоположным истинному положению. Для выяснения распределения зарядов вдоль связи между двумя атомами следует принимать во внимание одновременно энергию ионизации и сродство к электрону-другими словами, электроотрицательность каждого из двух атомов. [c.535]

Рис. 20-9. Схема образования химической связи во внутри- и внешнеорбитальных комплексах в теории валентных связей. Во внутриорбитальных комплексах кобальта, подобных Со(ЫНз) , шесть электронов металла спин-спарены на и Рис. 20-9. <a href="/info/18430">Схема образования химической связи</a> во внутри- и <a href="/info/347460">внешнеорбитальных комплексах</a> в <a href="/info/18393">теории валентных связей</a>. Во <a href="/info/373249">внутриорбитальных комплексах</a> кобальта, подобных Со(ЫНз) , <a href="/info/1646928">шесть электронов</a> металла спин-спарены на и
    Характерная особенность этого гиперпространства — наличие потенциальных ям (которые отвечают образованию химических связей), отделенных друг от друга барьерами. Каждая точка гиперпространства отвечает определенному состоянию реагирующей системы, и химическая реакция может быть представлена как движение некоторой изображающей точки по потенциальному гиперпространству. Последовательность состояний, занимаемая изображающей точкой, называется путем реакции, а координата (д)— координатой реакции. [c.67]

    Оно состоит переоценке роли спаривания спинов электронов, которое рассматривается как наиболее глубокая и важная причина образования химической связи. Между тем, непосредственного участия в образовании молекулы спины электронов не принимают и взаимодействия, благодаря которым атомы объединяются в молекулы, имеют чисто электростатическую природу. [c.157]

    Основному состоянию атома Ве отвечает электронная конфигурация 15 252. 3 химических соединениях бериллий двухвалентен, поэтому его валентному состоянию обычно сопоставляют конфигурацию 15 25 2р (о понятии валентного состояния см. далее). Тогда в образовании химических связей в молекуле ВеНа будут участвовать четыре валентных АО ф1 = 2 и Ф2 = 2рх АО атома бериллия и фз = 1 5а и ф< 1 АО атомов водорода.  [c.159]

    Но перевод атома в валентное состояние не сводится только к его возбуждению (промотированию). Следует учесть также неопределенность в ориентации спинов неспаренных электронов, участвующих в образовании химических связей. А если говорить точнее, то необходимо принять во внимание, что волновая функция валентного состояния атома не является собственной функцией операторов квадрата полного спина атома (5 ) и его проекции на ось квантования 2 Зг) — равно как она не является и собственной функцией операторов квадрата полного орбитального момента количества движения ( ) и его проекции [c.172]

    Химический процесс сопровождается изменением состава веществ, их структуры и обязательно энергетическими изменениями в реаги- )ующей системе. При химическом процессе происходит перегрупии-ровка атомов, сопровождающаяся разрывом химических связей в исходных веществах и образованием химических связей в продуктах 1)еакции. Вследствие взаимосвязанности форм движения материи и их 1 заимоиревращаемости при химических реакциях происходит превращение химической энергии в теплоту, свет и пр. [c.6]

    Столь различное поведение диа- и парамагнитных веществ обусловлено различным характером их внутренних магнитных полей. Как известно, вращение электронов вокруг оси создает магнитное поле, характеризуемое спиновым магнитным моментом. Если в веществе магнитные поля электронов взаимно замкнуты (скомпенсированы) и их суммарный момент равен нулю, то вещество является диамагнитным. Если же магнитные поля электронов не скомпенсированы и вещество имеет собственный магнитный момент, то оно является парамагнитным. Так, атом водорода, имеющий один электрон, па эамагнитен. Молекула же Нп диамагнитна, так как при образовании химической связи происходит взаимная компенсация спиноЕ электронов. [c.155]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Из этих данных ясно, что соединения жирных кислот и аминов, анионная и катионная части которых связаны слабой водородной связью, обладают невысокой полярностью и характеризуются низкой стабильностью они разлагаются при 125 °С и ниже. Эти соединения, как правило, высокоэффективны по отношению к черным металлам, но вызывают повышенную коррозию цветных металлов. Соединения сульфокислот и карбамида (БМП), а также соединения алкенилянтариого ангидрида и карбамида более полярны и значительно более термостойки, что является следствием образования химической связи между анионной и катионной частями их молекул. [c.306]

    Образование химической связи между атомами водорода является результатом взаимопроникнопения ( перекрывания ) электронных облаков, происходящего прн сближении взаимодействующих атомов (рис. 27). Вследствие такого взаимопроникновения плотность отрицательного электрического заряда в межьядсрном пространстве возрастает, Положительно заряженные ядра атомов [c.120]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохнмическом ряду, а также са.м факт образования некоторых ком плексов, например, так называемых сэндвичевых соединений — дибензолхрома Сг(СбНб)2, ферроцена Fe ( 51 5)2 и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами. [c.598]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    Долгое время считалось, что атомы благородных газов вообще неспособны к образованию химических связей с атомами других элементов. Были известиы лншь сравнительно нестойкие молекулярные соединения благородных газов — иапример, гидраты Аг-бНаО, Кг-61-120, Хе-бНгО, образующееся при действии сжатых благородных газов на кристаллизующуюся переохлажденную воду. Эти гидраты принадлежат к типу клатратов (см. 72) валентные связи при образовании подобных соединений не возникают. Образованию клатратов с водой благоприятствует наличие в кристаллической структуре льда многочисленных полостей (см. 70). [c.668]

    Возникновение гибридных, т. е. смешанных электронных орбита-лей, происходит в тех случаях, когда в образовании химических связей атомом А принимают участие электроны с различными, но не очень сильно отличающимися друг от друга энергетическими состояниями. Такому условию удовлетворяют 5- и р-электроны одного и того же уровня. Так, например, в процессе образования связей возбужденными атомами бериллия (1з 2з2р), бора (ls 2s2p ) и углерода (15 252р ) принимают соответственно участие один 5- и один р- электрон (Ве), один х- и два р-электрона (В) и один 5-и три р-электрона (С). Так как орбитали 5- и р-электронов различны по форме, то предварительной стадией образования химических связей атомами этих электронов является образование гибридных орбиталей, форма которых является результатом взаимного изменения форм орбиталей 5- и р-электронов, из которых они образовались. Такио гибридные орбитали характеризуются симметричной направленностью относительно центра атома и способностью к максимальному взаимному перекрыванию общих электронных орбиталей при последующем их взаимодействии с электронными орбиталями элемента-партнера. [c.53]

    Как объяснить образование химической связи в алкенах, учитывая, что каждый углеродный атом для стабилизации своего внешнего электронного уровня должен использовать восемь электронов При простой (одинарной) ковалентной связи, <ак в алканах, два электрона совместно используются двумя соседними, атомами (С С или С-С). При образовании двойной ковалентной связи в сонместное пользование поступают четыре электрона (С С или С=С). [c.213]

    Хотя 45-орбиталь проникает ближе к ядру, чем З -орбиталь, и, следовательно, имеет более низкий энергетический уровень, большая часть плотности вероятности для 4х-орбитали оказывается дальще от ядра, чем для З -лрбитали. Электрон на 45-орбитали оказывается в среднем дальще от ядра, чем З -электрон, но тем не менее 45-электрон более устойчив, потому что он имеет небольшую, но не пренебрежимо малую вероятность проникать к ядру на более близкое расстояние. Для образования химической связи различие в энергии электронов на столь близко расположенных атомных уровнях не имеет такого большого значения, как различие в расстоянии электронов от их ядер. Поэтому 45-электроны оказывают тем большее влияние на химические свойства атомов, чем сильнее погружены вовнутрь общего атомного электронного облака З -электроны. За исключением Сг и Си, все элементы от Са до 2п имеют одинаковую ва- [c.397]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Обнаружено, что некоторые комплексы платины являются активными противораковыми препаратами. К их числу относятся 1 ис-Р1(ННз)2С14, 1/ис- 1 (ННз)2С12 И цис-Р1 (сп)О2 (ни один из транс-изомеров не эффективен в этом отношении). Воспользуйтесь теорией валентных связей для объяснения диамагнетизма этих комплексов. Являются ли эти комплексы внутриорбитальными или внешнеорбитальными Какие гибридные орбитали используются для образования химических связей в этих комплексах  [c.250]

    Чтобы объяснить свойства соединений бора, иногда приходится учитывать возможность образования химической связи сразу между тремя атомами. Три атомные орбитали, по одной от каждого из трех атомов, могут комбинировать друг с другом, образуя три молекулярные орбитали одну связывающую, одну разрыхляющую и одну несвязывающую. [c.272]

    Спаривание спинов, таким образом, оказывается лишь своего рода мнемоническим правилом или, по выражению Ван Флека, синдикатором образования химической связи в рамках модели Гайтлера — Лондона, но не объяснением природы этого явления. [c.158]


Смотреть страницы где упоминается термин Образование химически связей: [c.422]    [c.558]    [c.64]    [c.115]    [c.116]    [c.143]    [c.340]    [c.401]    [c.514]    [c.151]   
Смотреть главы в:

Почему происходят химические реакции -> Образование химически связей




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь образование

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте