Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан крекинг

    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]


    Увеличение объемов при п проливе газообразных парафиновых углеводородов. Если пропан в процессе пиролиза па 100% превращается в метан и этилен или в пропен и водород, то объем газа при этом увеличивается вдвое. Из 100 л пропана образуется 200 л продуктов реакции. Отсюда следует, что независимо от того, каково удельное значение реакций крекинга и дегидрирования, всегда образуется двойной объем продуктов реакции сравнительно с исходным. Прн 50%-ном превращении пропана из 100 л пропана образуется 150 л продуктов реакции. [c.51]

    Этилен из газов крекинга и пиролиза часто выделяют фракционировкой. Эти газы в большинстве случаев содержат водород и метан. Чтобы можно было отделить фракцию Сд от водорода и метана без потерь перегонная колонна долл на иметь метановое орошение. Для достижения этого необходимы давление и низкая темпера- [c.70]

    Способ был уже подробно рассмотрен, когда речь шла о переработке природного газа. В данном случае он применяется или для концентрации жидкой составной части (Сз и С4 — углеводороды) крекинг-газа, или для отделения водорода и метана. Этим очень сильно облегчается дальнейшее разделение сконцентрированной таким образом углеводородной смеси. Принцип разделения основан на том, что углеводородная смесь вступает в контакт с промывочным маслом (абсорбентом) при таких условиях температуры и давления, при которых метан и водород в нем не растворяются и удаляются из установки. Свободный от метана и водорода газ, абсорбированный маслом, выделяют из последнего нагревом и затем разделяют. Табл. 39 показывает результат разделения пирогаза путем абсорбции при комнатной температуре и давлении 20 ат. [c.72]

    МЕТАН (из природного газа и газов крекинга) [c.277]

    При контактировании с сырьем воздействие катализатора на углеводороды довольно быстро уменьшается вследствие отложения, кокса в его порах. Для восстановления активности, временно потерянной из-за отложения кокса в порах, катализатор должен быть освобожден от кокса. Сжигая кокс и превращая его в газообразные легко отделяемые от катализатора продукты сгорания, восстанавливают активность катализатора. Процесс восстановления активности катализатора носит название регенерации Образующиеся при этом газы называют газами регенерации. Они представляют собой в основном смесь нескольких газов — азота, кислорода (не вступившего в соединения), углекислого газа, окиси углерода и водяного пара. В противоположность газам регенерации газы крекинга состоят преимущественно из легких парафиновых и олефиновых углеводородов (метан, этан, этилен, пропан, пропилен и др.). [c.15]


    По мере углубления отбора солярового дистиллята при вакуумной перегонке мазута коксуемость дистиллята увеличивается кроме того, в нем повышается концентрация соединений, понижающих активность катализатора (соединения железа, никеля, ванадия и меди, содержащиеся в незначительных количествах в нефтях и выделяемых из них соляровых дистиллятах) С увеличением количества примесей на катализаторе уменьшается выход бензина и повышаются выход кокса и количество метан-водород-ной фракции в газах крекинга. [c.33]

    При вакуумной перегонке мазутов и гудронов часть содержащих металл соединений сырья попадает в соляровый дистиллят. По мере накопления металлов па поверхности катализатора актив-рость и избирательность его ухудшаются, выход бензина падает, а легких газов и кокса возрастает плотность крекинг-газов при этом уменьшается из-за образования повышенных количеств водорода и метана. Поэтому нередко о степени загрязнения катализатора судят на основании анализов легкой, метан-водородной части крекинг-газов. [c.41]

    Вспрыскивание или испарение какого-либо углеводорода в зону действия пламени подвергает вещество, находящееся в виде отдельных молекул в парах, действию температуры, при которой углеводороды уже не стабильны и разлагаются на элементы. Такое разложение происходит не прямо а проходит ряд ступеней. По аналогии с известными процессами крекинга нефтей до газа, при котором температуры все-таки ниже, чем в пламени (700° С вместо 1200—1500° С) можно заключить, что большие молекулы разбиваются на более мелкие молекулы газов. Образуются метан, этан и этилен, пропан и пропилен, немного дивинила и, возможно, — водорода. [c.473]

    Сернокислотная гидратация. Производство этанола. В качестве сырья можно использовать как чистый этилен, так и газы (с установок крекинга или коксования), содержащие 30—40% этилена, в которых остальными компонентами обычно являются этан и метан. [c.200]

    I — метан II — водяной пар III — вода IV — шлам V — продукты крекинга на разделение. [c.214]

    Реакции диспропорционирования катализируются некоторыми формами цеолитов и цеолитсодержащих катализаторов [45], но протекают с низкой селективностью из-за протекания реакций крекинга, циклизации и др. Из н-парафинов Се—Сю, получают значительные количества метана, бутана и изобутана,, а также высокомолекулярные насыщенные соединения. В какой-то степени это согласуется с данными термодинамического анализа (см. табл. 48), из которых следует, что наиболее вероятными продуктами диспропорционирования могут быть метан,, бутан, но не этан. [c.218]

    Основными компонентами природного газа являются метан, сероводород, диоксид углерода. Данные о некоторых реакциях СО2, получении водорода и синтез-газа из СН4, взаимодействии метана с насыщенными (диспропорционирование) и ненасыщенными (крекинг) углеводородами приведены выше. Ниже рассмотрены термодинамические характеристики процесса утилизации сероводорода — процесса Клауса и синтезов на основе метана. [c.349]

    Аналогичным образом, деструктивная гидрогенизация молекул углеводородов может вначале пойти по пути крекинга до получения олефинов и даже углерода, который, в свою очередь, в процессе гидрогенизации по реакции 6 образует метан. Окислению углеводородов обычно предшествует термический крекинг (реакция 13). Важнейшим условием может оказаться окисление атома углерода (реакция 1). [c.90]

    Тем не Менее метан И другие легкие углеводороды образуются по реакции пиролиза при переработке сырой ефти в процессе фракционирования при атмосферном давлении, когда не-конденсированный газ верхнего погона содержит водород, метан и этан. Газ получают также при каталитическом крекинге, в процессе конверсии газойля и других средних дистиллятов в бензин, в результате чего образуется значительное количество побочных газов (водорода, метана, этана и этилена), которые затем выводят как неконденсируемый поток в верхней части системы. [c.97]

    Пример II-2. При термическом крекинге пропана в определенных условиях могут быть получены или пропилен п водород, или этилен и метан. Предположим, что пропан подвергается крекингу при пропускании через трубку, которая обогревается снаружи большим количеством горячих газов, имеющих температуру 780° С. Для проектирования промышленной установки требуется определить  [c.63]

    Другой вариант реактора для парциального окисления метана кислородом под давлением приведен на рис. П-19. Метан и кислород, нагретые до 400° С и при давлении —4 ат, после смешения проходят через распределитель 2 и попадают в камеру сгорания 3, в которой температура поднимается более чем до 1500° С п происходит образование ацетилена и алкенов. Вторичный углеводород подогревают и вводят через сопла 4 и 5 в камеру сгорания, где путем крекинга снова получают ацетилен и алкены. В конце процесса газы охлаждаются водой до 130—140° С и выходят из реактора. [c.96]


    Метан вводится в реактор прп 400° С и после отделения серы покидает его при температуре 360° С, следуя в установку для каталитического крекинга. Расход поступающего в реактор метана составляет 200 л4 /ч па 1 т катализатора. [c.267]

    Исходное сырье, богатое-ароматическими углеводородами, должна дать промежуточный из рассмотренных выше выход бензина, большой выход кокса и газа, богатого водородом и метаном. Из-за большого выхода кокса и затрудняется крекинг тяжелых фракций нефти, богатых ароматическими углеводородами. [c.229]

    На рис, 8.6 приведены некоторые кинетические параметры константа скорости к (с ) и энергия активации (ккал/моль) элементарных актов превращения переходного состояния этана с трех-, четырех- и шестьюатомным кластером палладия. Направление К2 приводит к этилену - дегидрирование этана, а К4 к метану - крекинг этана. Анализ этих структур показывает, что наибольшая скорость указанных превращений углеводорода достигается в случае кластера Рс1в, причем выход метана с ростом температуры будет увеличиваться. Это следует из сравнения величин энергии активации - для направления К4 она больше, чем для К2. Как известно, реакции с высокой энергией активацшг начинают протекать с заметной скоростью при повышенной температуре. [c.520]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    Анализ газов пиролиза пропана и н-бутаиа в целях установления влияния температуры прн постоянном времени нагрева на протекание реакций крекинга й дегидрирования выполнен П. К. Фролихом с сотрудниками [20]. На рис. 21 показан состав продуктов нпролиза пропана, а именно про-пена, водорода и этилена (метан не обнаружен), в зависимости от температуры. Можно видеть, что при 880° в газе содержится наибольшее количество олефипов. Максимальное содержание пропепа в газе наблюдается нри температуре реакции 810°. До этой температуры содержание водорода в газе эквивалентно содернчанию нропена. Отсюда следует, что здесь происходит чистая реакция дегидрирования. Выше 810° содержание пропепа падает, в то время как содержание водорода сильно возрастает, показывая этим, что пропеп претерпевает вторичную реакцию, сопровождающуюся освобождением водорода. Максимальная концентрация этилена достигается при 890°, когда содержание его составляет около 30%. [c.51]

    Концентрация и выделение чистых олефинов, например из крекинг-газов, газов пиролиза, риформипг-газов и т. д., исключительно важны для нефтехимической промышленности. В принципе эти процессы заключаются в том, что смеси газообразных алифатических углеводородов разделяются на этан-этиленовую, пропан-пропеновую и бутан-бутеновую фракции. Каждую фракцию можно затем разделить на олефиновую и парафиновую части. Обычно из таких газовых смесей прежде всего выделяют водород и метан. [c.69]

    Пиролиз 2-метилпентена-2 в изопрен проводится в крекинг-печи. Для того чтобы добиться превращения олефинов с хорошими выходами и с минимумом побочных реакций, в качестве катализатора применяют бромистый водород, а в качестве разбавителя — пар. Пиролиз 2-адтилпентена-2 проводится при температурах 650—800 °С и времени контакта от 0,05 до 0,3 с. Изопрен, метан, другие газы и непрореагировавший 2-метилпентен-2 разделяются ректификацией. 2-Метилпентен-2 снова возвращается в пиролизную печь. [c.232]

    Развитие процессов нефтехимического синтеза связано с широким использованием природных промышленных газов. Предельные углеводороды — метан, этан, нронан, бутан, изобутан, пентан применяют в качестве топлива, а также сырья для получения непредельных углеводородов (путем крекинга и пиролиза). Непредельные углеводороды в свою очередь являются сырьем для получения синтетических материалов. В промышленных масштабах перерабатываются газы этилен, пропилен, бутилены, дивинил, изонрен, ацетилен. [c.233]

    Бельчец и другие [4, 5] крекировали метан при очень низких давлениях и наблюдали взаимодействие продуктов крекинга с охлажденными зеркалами иода и теллура. Они подчеркивают тот факт, что зеркала находились в пределах длины свободного пробега от проволоки. Они также утверждают, что смогли выделить продукты реакции метилена с иодом (метилен-иодид) и теллуром (теллур-формальдегид). Если зеркало находилось на расстоянии, большом, чем длина свободного пробега от проволоки, то можно было наблюдать образование только радикалов метила. Отсюда они сделали вывод, что получающиеся при этом радикалы метила являются но существу вторичными продуктами . [c.73]

    Бон и Коуард [6] произвели крекинг этана при 800° С в присутствии водорода и получили выход метана 41%. В тех же самых условиях при использовании в качестве разбавителя азота выход метана снизился до 18%. Это дало повод Бону и Коуарду заключить, что метан образуется в результате гидрирования радикалов метила. Аналогично этану ведет себя этилен. Гарднер [27] установил, что разложение этана Ьодобно крекингу других углеводородов, так как в результате расщепления получаются олефин и парафин  [c.84]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    С4 [251], а из 2,2,4-триметилпентана при 500° С получается газ, богатый метаном (благодаря конечным метильным группам), бутаны и бутены, но мало углеводородов С5. Присутствие 13% я-бутенов в крекинг-газах, образующихся из изооктана, показывает степень изомеризации олефинов при каталитическом крекинге. Газ с высоким содержанием метана был получен при крекинге гексана, 2,2-диметилбутана вследствие наличия большого количества метпльпых групп. [c.328]

    Таково влияние на характер нефтей динамометаморфизма . Теоретически говоря, более древние нефти подверглись и большему его влиянию. В общем, это подтверждается примером нефтей Соединенных Штатов, где палеозойские нефти, вообще говоря, легче мезозойских, мезозойские же — легче третичных. Но из этого правила много исключений, объясняемых особенностями исходного материала и геологической обстановкой того или иного месторождения. Из заводской практики нам хорошо известно, что если нефть будет перегрета, то начинается распадение ее тяжелых молекул на более легкие (на этом основан крекинг нефти). Если применить очень высокую температуру, то мы можем всю нефть превратить в газ, в составе которого главную роль будет играть метан. Вероятно, п в природе, если нефтяные залежи попадали в условия чрезвычайно высокого давления или очень больших температур, начиналось разложение нефти, которое заканчивалось разрушением углеводородов с выделением водорода и углерода. Это — крайняя степень метаморфизма органического вещества. Так, вероятно, образовался графпт — один пз крайних членов ряда битумов, а водород вследствие его малого атомного веса и крайней подвижности, вероятно, улетучился из литосферы в-атмосферу. [c.348]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    II практически состоят из смеси м-бутана и изобутана. При кре-чинге ia алюмосиликатном катализаторе получаются газы, также богатые метановыми углеводородами, в основном пропаном и оутанами, но олефинов содержится в них около 30 объемн. %. 1Эти галы заметно отличаются по составу от получаемых в примерно таких же термических условиях газов низкотемпературного крекинга под давлением, среди цредельных углеводородов которых преобладают метан и атан. [c.16]

    В процессе крекинга образуются, кроме того, газ и смола. Газоо 5разныо продух ты представляют собой в основном смесь изобутаиа и -бутана. Иногда в газах присутствуют водород и метан, ТО зависит от температуры крекинга и природы крекируемого сырья. Ненасыщенных углеводородов в газах но найдено. [c.431]

    Без чрезмерных обобщений можно сказать, что во многих процессах разделение смеси продуктов крайне сложно. Самые высокие ректификационные колонны в мире используются для выделения этилена из продуктов крекинга пропана. Согласно химическому уравнению, при нагревании пропана должны получаться этилен и метан (СзНя—>-СН4+С2Н4). Ввиду устойчивости и других характеристик образующихся продуктов можно ожидать, что реакция пойдет легко и селективно. Однако в продуктах крекинга присутствуют свободные радикалы, образующие большое количество полимеров. Получается даже жидкий продукт, называемый дриполеном, который можно добавлять з автомобильный-бензин, [c.136]

    Другие процессы переработки нефти, щапример коксование, крекинг водяным паром, легкий крекинг, гидрокрекинг, каталитический риформинг, хотя и направлены на минимальное образование газоообразных продуктов, также ведут к обрайованию некоторого количества метана. Это обусловлено в больщинстве случаев локальным перегревом, недостаточным перемешиванием продуктов или неудовлетворительным регулированием технологического Процесса. Исключение составляет крекинг водяным паром, при котором лигроин и газойль конвертируются в этилен в процессе термического крекинга. Ясно, что в таких условиях, даже если выход этилена доведен до максимума, все равно образуется метан [3]. [c.97]

    В обеих установках компоненты газа, выходящего из печи низкотемпературного риформинга, находятся, по-видимому, в химическом равновесии, и дальнейшее образование метана может быть достигнуто только введением иового компонента или снижением температуры. В настоящее время для обогащения газа в процессе Газинтан используется каталитическая гидрогенизация, т. е. снижается температура (приблизительно до 350°С) и вводится дополнительный очищенный пар лигроина, реагирующий, с оставшимся водородом и паром. Температурный профиль во втором реакторе, однако, повышается с самого начала, так как при низкой температуре не происходит никакого эндотермического крекинга или риформинга, а избыточный водород обеспечивает немедленное начало экзотермических реакций гидрогенизации. Аналогично процессу КОГ и здесь желательно улучшить характеристики горения получаемого газа путем дополнительной стадии метанизации. Это обеспечивает удаление любого остаточного водорода, и после поглощения основной части двуокиси углерода, находящейся в газе, окончательный продукт становится полностью взаимозаменяемым с природным газом, содержащим главным образом метан. Выходное давление обычно близко -к 35 кгс/см (3,5 МПа). [c.109]

    Соотношение выходов продуктов гидрокрекинга определяется соотношением скоростей изомеризации карбоний-ионо1В, их распада и стабилизации. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотермичен, а температуры, при которых пров одится гидрокрекинг, невысоки, метан и этан почти не образуются. На катализаторе с высокой кислотной и умеренной гидрирующей активностями насыщение карбоний-ионов, содержащих много атомов углерода и быстро распадающихся, происходит в небольшой степени, поэтому высок выход изобутана и незначителен выход изомеров исходного н-1парафина. Степень равновеоной изомеризации карбоний-ионов возрастает с увеличением числа атомов углерода, образующиеся при их распаде и последующей стабилизации парафины изомеризованы поэтому в степени, превышающей термодинамически равновесную. На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, а отношение изопарафинов к н-парафинам в продуктах крекинга невелико. [c.275]

    Регенеративный реактор для термического крекинга метана. Такой реактор действует адиабатически в одном цикле из четырех фаз. Реактор заполнен керамической массой, которая попеременно нагревается и охлаждается метаном, который эндотермически крекируется в ацетилен. Между этими основными фазами находятся фазы удаления и очистки, таким образом, полный цикл будет следующим нагревание — удаление горючих газов — реакция — удаление реакционных газов. [c.109]

    Газы с установок каталитического крекинга, коксования и термического крекинга разделяют на абсорбциоипо-газофрак-цнотфующей установке (АГФУ и ГФУ), отделяя сухой газ (метан, этан и частично пропан), который после очистки используется в качестве сырья для синтеза этилового спирта. Избыток сухого газа направляется в топливную сеть завода для производства водорода пли на факел. [c.6]


Смотреть страницы где упоминается термин Метан крекинг: [c.52]    [c.40]    [c.226]    [c.107]    [c.527]    [c.134]    [c.423]    [c.429]    [c.431]    [c.486]    [c.242]   
Общая органическая химия Т.1 (1981) -- [ c.158 ]

Общая химическая технология органических веществ (1966) -- [ c.135 , c.136 ]

Общая химическая технология (1964) -- [ c.513 , c.514 ]

Общая химическая технология органических веществ (1955) -- [ c.118 , c.129 , c.133 ]

Общая химическая технология (1970) -- [ c.142 , c.497 , c.520 , c.522 ]

Курс технологии минеральных веществ Издание 2 (1950) -- [ c.220 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.52 ]

Органическая химия Издание 2 (1976) -- [ c.92 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.242 , c.243 ]

Общая химическая технология Том 1 (1953) -- [ c.220 , c.277 ]

Общая химическая технология Том 2 (1959) -- [ c.436 ]

Основы технологии синтеза каучуков Изд 2 (1964) -- [ c.52 , c.56 , c.59 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Автотермический крекинг метан

Ацетилен винилирование цианистого метана крекингам

Ацетилен выделение из газов крекинга метана

Бутилен в крекинг-газе метана

Кремнезем, влияние его на крекинг бутана метана

Материальный баланс термоокислительного крекинга метана

Метан в крекинг-газе

Метан каталитический крекинг на ацетилен

Метан крекинг и пиролиз

Метан получение при крекинге изопарафинов

Метан термическое разложение крекинг

Метан термоокислительный крекинг

Механизм крекинга метана

Мешкова, Е. Н. Еремин. Влияние различных факторов на эффективность химического действия разряда при крекинге метана

Реакторы термоокислительного крекинга метана

Термический крекинг метана

Термодинамика реакций термического крекинга метан

Чернышева термоокислительного крекинга метана

Электрическая дуга, применение для крекинга метана

Эндотермические реакции при крекинг и разложение метана



© 2025 chem21.info Реклама на сайте