Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Учение о смесях

    В качестве источника света эти ученые пользовались изобретенной Бунзеном горелкой — той самой бунзеновской горелкой, которая известна каждому начинающему химику. Сгорающая в горелке смесь газа и воздуха дает почти бесцветное пламя с достаточно высокой температурой. Когда Кирхгоф помещал в пламя горелки крупицы различных химических веществ, оно окрашивалось в разные цвета. Свет от такого пламени, пропущенный через призму, давал не сплошную полосу, а отдельные яркие линии. [c.100]


    Интересную гипотезу выдвинула группа московских ученых из Всесоюзного научно-исследовательского института ядерной геологии и геофизики. Они рассматривают горные породы как твердую смесь, состоящую из зерен и пластин минералов. При подвижках земной коры во время землетрясений и других сейсмических [c.26]

    Тем временем ученые ищут новые способы повышения КПД месторождений. А что если закачивать под землю не воду, а углеводородный газ Ведь известно, что нефть и эти газы взаимно растворимы извлечь же из подземной кладовой газожидкостную смесь намного легче, чем жидкость... Провели опыты. И что же Оказалось, что таким способом можно извлечь до 90% нефти При этом вовсе не обязательно, чтобы газ поступал во все пространство, занимаемое нефтью. Достаточно заполнить газом всего 1,5—2% от общего объема, нефтеотдача пласта резко возрастает. [c.58]

    Гидролитическая адсорбция имеет большое значение в почвенных условиях, а также в корневом питании растений. На основе представлений об обменной адсорбции К. К. Гедройц создал свое учение о почвенном поглощающем комплексе, которое имеет важное значение для разрешения проблемы повышения плодородия почв. На основании полученного им большого экспериментального материала Гедройц установил, что поглощение иона почвой из раствора сопровождается выходом из нее другого иона в строго эквивалентных количествах. По Гедройцу, носителем обменной адсорбции в почве является почвенный поглощающий комплекс, который представляет собой высокодисперсную смесь нерастворимых в воде алю-мосиликатных, органических и органоминеральных соединений. Многочисленными экспериментами Гедройц доказал, что в таком [c.362]

    На основе представлений об обменной адсорбции получило развитие учение К- К- Гедройца о поглои ающем комплексе, имеющее важное значение для разрешения проблемы повышения плодородия почв. Гедройц установил, что поглощение иона почвой сопровождается выходом из нее другого иона в эквивалентном количестве. Носителем обменной адсорбции в почве, согласно Гедройцу, является поглощающий комплекс, т. е. та часть почвы, которая с химической стороны представляет смесь не растворимых в воде алюмосиликатных и органоминеральных соединений, а с физической — характеризуется высокой степенью дисперсности и большой величиной суммарной поверхности. Гедройц доказал, что в таком обмене участвуют только катионы, причем обменная способность их тем выше, чем больше валентность, в пределах же ионов одной валентности, чем больше атомный вес. По способности входить в поглощающий комплекс катионы могут быть расположены в ряд  [c.292]


    Учитывая относительную простоту синтеза метанола, возможность получения исходных реагентов из угля, некоторые ученые предполагают, что метанол в будущем найдет более широкое применение в технику, в том числе в транспортной энергетике. Смесь метанола и бензина может быть эффективно использована в двигателях внутреннего сгорания. Недостатком метанола является его высокая токсичность. [c.307]

    Изучив свойства горючего воздуха , ученый установил, что от углекислого газа он отличается нерастворимостью в воде и ш ело-чи. Г. Кавендиш наблюдал, что при взаимодействии водорода с воздухом образуется взрывчатая смесь. Он определил также плотность газа, используя два метода. В первом опыте взвешенный заранее мочевой пузырь заполняли воздухом и его массу сравнивали с аналогичной массой пузыря и водорода. Плотность горючего воздуха , вычисленная этим способом, оказалась в 7 —10 раз меньше плотности обычного воздуха. Во втором опыте определяли потерю в массе при растворении известного количества металла в кислоте. Этим методом было установлено, что водород легче воздуха в 11 раз (современное значение 14,4). [c.70]

    В 1903—1906 гг. русский ученый-ботаник М. С. Цвет после множества экспериментов разделил сложную смесь растительных пигментов из листьев растений при пропускании ее петролейно-эфирного раствора через вертикальную стеклянную колонку, заполненную порошкообразным карбонатом кальция. При этом возник ряд окрашенных зон, по числу которых можно было судить о сложности состава анализируемой смеси. Пропуская через колонку различные растворители (полярные, неполярные), оказалось возможным регулировать степень распределения зон по длине колонки сдвигать или раздвигать их, тем самым способствуя повышению точности последующего качественного и количественного определения. Так была создана жидкостная адсорбционная хроматография .  [c.5]

    Более века считали, что атмосферный воздух состоит исключительно из кислорода (21% по объему) и азота (79% по объему), если не учитывать небольших переменных количеств водяных паров и двуокиси углерода. В 1785 г. английский ученый Генри Кавендиш (1731—1810) изучал состав атмосферы. Он смешивал кислород с воздухом и затем через полученную смесь пропускал электрическую искру с целью получения окислов азота, которые затем поглощались раствором, находящимся в контакте с газом (рис. 5.2). Пропуская искры до тех пор, пока объем уже более не уменьшался, и удаляя кислород из оставшегося газа при помощи другого раствора, Кавендиш заметил, что после такой обработки непоглощенным оставался лишь небольшой пузырек газа, по размерам не превышающий 1/120 части первоначально взятого воздуха. Несмотря на то что тщательность экспериментов Кавендиша не вызывала сомнений, химики все же допускали, что при более продолжительном пропускании искр остатка газа не было бы, и эксперименты Кавендиша можно было бы рассматривать как подтверждение того, что атмосфера состоит только из кислорода и азота. [c.108]

    Группа ученых из университета Южной Каролины сообщила , что создала хроматографическую колонку, способную за час с небольшим Выдавать более грамма чистейшего Сбо- В качестве сорбента использовали смесь силикагеля и обесцвеченного угля марки Норит-А, элюент - толуол, прогоняемый под небольшим избыточным давлением со скоростью около 15 мл/мин. [c.118]

    М серной кислотой и полученную смесь аминокислот, обогащенную на 85 % изотопом С фракционируют на ионообменной колонке [70]. Специфически меченные изотопом С аминокислоты синтезированы также для рещения вопросов, связанных с выяснением механизмов реакций. Заслуживает внимания пример синтеза валина, содержащего СНз-группу вместо одной из его метильных групп изопропильной группировки в боковом радикале. Это дает возможность изучать с помощью ЯМР включение валина в пенициллин. Синтез (25)-[4- С]валина интересен еще и потому, что его независимо осуществили три группы ученых. Эти синтезы представлены на схемах (39) — (41) [71—73] и дают представление [c.252]

    В заключение следует рассмотреть факт, заключающийся в том, что СО, образующийся в результате медленной реакции между углеводородами или их производными и кислородом, может в соответствующих условиях способствовать взрыву и таким образом смещать участок воспламенения в сторону более низких температур и давлений. Такое явление наблюдалось первоначально русскими исследователями [3, 21, 28, 42] для смесей метана и этана с кислородом аналогичные исследования с высшими углеводородами были проведены французскими учеными [10, 13]. Например, при быстром нагревании 1 %-ной смеси гексана с воздухом при давлепии 100 мм рт. ст. в кварцевом сосуде, нормальная граница воспламенения лежпт, примерно, при 700° С, и продолжительность индукционного периода около 1 сек. осли та же самая смесь нагревается до 600° С, то воспламенение ее происходит после индукционного периода продолжительностью около 1 часа. Участок воспламенения с соответствующими длинными индукционными периодами соответствует взрывному полуострову СО. Болоо детальное рассмотрение данного вопроса читатель может найти в оригинальной литературе. [c.260]

    Ранее (гл. II, ч. А) мы выяснили, что мелкие монеты, выпущенные до 1982 года и после, имеют неодинаковый состав. Как вы могли заметить, они имеют даже разную массу. В этой лабораторной работе смесь этих монет будет для нас встречающейся в природе смесью двух изотопов воображаемого элемента монетия . К смеси монеток вы примените тот же самый способ, который применяется учеными для определения относительного содержания разных изотопов, присутствующих в образце элемента. [c.314]


    В этих йге условиях толуол дает смесь ксилала, метилэтилбен-зола и более сложных уг.теводородов. Понятно, что из этой работы вытекают весьма важные следствия, п поэтому внимание многочисленных ученых было пр ивлечено к изучению действия хлористого а.тюминия. [c.323]

    По схеме, разработанной чехословацкими учеными [33], из инвертированной сахарозы выкристаллизовывают часть глюкозы. Получающийся при отделении кристаллов глюкозы маточный раствор, так называемый фруктозный сироп , содержит на 100 частей сухого вещества 60% фруктозы и 40% глюкозы. Для получения маннита фруктозный сироп, содержащий 78% редуцирующих углеводов, помещают в автоклав высокого давления, добавляют 150% (к массе сиропа) дистиллированной воды и с помощью гидроокиси кальция доводят pH раствора до 7,5. После добавления водной суспензии никеля Ренея раствор гидрируют при давлении 7—8 МПа и температуре 80—120°С в течение 4—6 ч. Выход маннита к сухому веществу фруктозного сиропа около 20%. Запатентован также [34] способ гидрирования 40—60%-ных водных растворов инвертированной сахарозы и глюкозы в присутствии никеля на кизельгуре и гидроокиси кальция (из расчета 0,25—1,5% СаО к углеводу). В результате получают смесь 33,8% маннита и 46,4% сорбита. [c.173]

    Рекс и Пек [20] показали, что натуральный каучук оказывает заметное влияние на поведение асфальтобетона, но они сомневаются в целесообразности его применения в дорожном покрытии. Эти ученые принши к заключению, что смешивать предварительно порошкообразный каучук с битумом лучше, чем вводить его непосредственно в асфальтобетонную смесь. При прямом введении порошка каучука способность асфальтобетона уплотняться в процессе укладки на дороге ухудшается. Если же каучук ввести в битум заранее, то дорожная смесь получается более стабильной и лучше уплотняется, чем контрольная смесь без каучука. Однако Рекс и Пек, установив, что битумное покрытие, модифицированное каучуком, меньше реагирует на изменение температуры, не показали, стало ли покрытие под влиянием эластомера более пластичным при низких температурах и менее пластичным при высоких. [c.228]

    Газификацию твердого топлива можно проводить также с по-. ющью кислорода. Еще в 1936 г. на одном из первых заводов по по-. учению бытового газа путем окисления твердого топлива кислородом под давлением в газогенератор с бурым углем вводили смесь кислорода с перегретым водяным паром при температуре 500° и давлении 200 ат. После очистки состав газа (в объемн, %) был следующий  [c.231]

    ЛЮИЗИТ — смесь изомеров хлорви-нилдихлорарсина (С1СН=СН—As lj) — темно-коричневая жидкость с резким раздражающим запахом, в малых концентрациях напоминающим запах герани. Л. был предложен в качестве отравляющего вещества кожно-нарывного действия американским ученым А. Льюисом в конце первой мировой войны. [c.150]

    СВЕРХТЕКУЧЕСТЬ-отсутствие вязкости в жидком гелии при температурах,, близких к нулю (т. е. вязкость меньше, чем достигнутая граница измерения, равная 10 " пз) во время протекания его через тонкие капилляры и щели в интервале температур от О до 2,18 К (— 270,98 С). С. открыта сове1ским ученым П. Л. Капицей в 1938 г. С явлением С. связано существование т. паз. термомеханического эффекта (или эффекта фонтанирования), заключающегося в том, что снижение температуры в узкой щели вызывает появление дополнительной разности давлений на концах этой щели. Если погрузить в гелий II (см. Гелий) капилляр и нагревать его верхний конец, то из капилляра начинает бить фонтан. Значит, в гелии II, кроме гидростатического, действует также и гидротермический напор. Гидродинамическая теория С. полнее всего была развита советским ученым Л. Д. Ландау. Считают, что гелий II представляет собой смесь двух жидкостей, которые могут двигаться независимо друг от друга одна из них — сверхтекучая — не связана с тепловым движением, а другая — нормальная — содержит в себе все тепло, имеющееся в гелии II. Относительная концентрация этих двух жидкостей определяется соотношением их плотностей и зависит от температуры. Возможность существования одновременно двух независимых видов движения в гелии II экспериментально доказана советским ученым Э. А. Апд-роникашвили. Открытие и исследование С. положили начало новому разделу современной физики — квантовой гидродинамики. [c.219]

    Металлические РЗЭ долгое время находили ограниченное применение, Еще Ауэр фон Вельсбах, сыгравший важную роль в открытии новых РЗЭ, наладил производство ферроцерия — сплава церия с железом. В промышленном масштабе производился такл<е мншметалл — смесь металлических РЗЭ главным образом цериевой подгруппы. Использование ферроцерия и мишметалла основывалось на том, что эти сплавы обладают пирофорными свойствами. Убедиться в пирофорности можно, если провести по слитку сплава напильником. При этом возникают искры — ме.пьчайшне кусочки металла воспламеняются на воздухе. Ауэр фон Вельсбах предложил использовать стержни из ферро-церия для зажигалок, построил большой по тем временам завод. Будучи настоящим ученым (ему принадлежит честь открытия Нс[, Рг и Ьи), он на средства, полученные от продажи зажигалок, основал научно-исследовательский институт для изучения химии РЗЭ. [c.70]

    Учение о флогистоне, направив внимание химиков на изучение процессов горения, окисления и восстановления веществ, привело А. Лавуазье к количественным исследованиям этих процессов, которые показали, что для их объяснеция флогистон излишен. К концу XVIII в. химия уже приобрела положение самостоятельной пауки, изучающей состав и свойства веществ. Оформление химии в науку произошло в результате четкого определепия предмета и задач данной науки, разработки количественного метода исследования, установления ряда основных понятий (химический элемент, соединение, смесь, химическая реакция) и открытия основополагающих законов (закон сохранения массы, стехиометрические законы). [c.8]

    В рукописях арабских и средиеазиатских ученых X—XI вв. часто можно встретить объяснение образования семи металлов в зависимости от родительской нары ртути и серы. В основе этих семи жемчужин [металлов] лежат ртуть и сера. Если ртуть чистая, тогда смесь образуется в любых соотношениях. При быстром охлаждении смеси получается золото. Если ртуть взять отдельно и прибавить серу в расплавленном состоянии, получается медь. Ртуть и сера, взятые в нечистом состоянии, дают вместо золота железо. Если смешение этих металлов идет очень быстро, то образуется олово если присоединение непрочно, то образуется свинец .  [c.19]

    Реакция между азотом и водородом Ы2+ЗН23р 2МНз имеет весьма примечательную историю. Многие ученые на протяжении всего XIX в. пытались осуществить эту реакцию, используя все методы, которыми владели тогда химики нагревали исходные вещества, пропускали через их смесь электрические искры, пытались ускорить реакцию, подыскивая для нее катализаторы. Однако все эти усилия не приводили к сколько-нибудь заметному успеху. Это сейчас легко объяснить, зная, что молекулы азота очень прочны. Лишь в начале XX в., после того как получила развитие теоретическая химия, удалось выяснить условия протекания этой реакции. [c.41]

    Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи — определения компонентов хлорофилла. Метод оказался универсальным. Годом возрождения его является 1931 год, когда Кун, Виптерштейн и Леде-рер стали проводить широкие исследования различных растительных и животных пигментов, используя про-явительный вариант хроматографии, при котором анализируемые веш,ества разделяются, перемещаясь по слою сорбента в потоке растворителя. В 1940 г. шведский ученый А, Тизелиус разработал фронтальный и вытеснительный методы хроматографического анализа. Фронтальный метод заключается в том, что исследуемая смесь непрерывно подается под некоторым давлением на колонку с сорбентом. Компоненты смеси по-разному сорбируются и потому передвигаются по колонке с различными скоростями. Вытеснительный метод основан на том, что более сильно адсорбирующееся вещество вытесняет с поверхности адсорбента слабо адсорбирующееся и занимает его место. Поэтому после введения в колонку определенного количества исследуемой смеси начинают подавать вытеснитель — жидкость, адсорбирующуюся сильнее, чем все компоненты смеси. Тогда зоны веществ распределяются на слое по степени адсорбируемости и каждое последующее вещество, вытесняя предыдущее, подтолкнет его вперед. Этот метод позволяет сконцентрировать компоненты на слое адсорбента и удобен, в частности, для определения примесей. Дальнейшее развитие метода привело к появлению бумажной, тонкослойной и ионообменной хроматографии. Наиболее крупным скачком в развитии метода является создание английскимп химиками А. Мартином и Р. Сингом распределительной хроматографии, за что они были удостоены в 1952 г. Нобелевской премии. [c.326]

    В одном из фантастических романов описывается следующий процесс ...ученый приготовил в кювете всесокрушающую смесь, известную под названием царской водкн , н погрузил в нее золотую Нобелевскую медаль. Медаль покрылась пузырьками. Они сначала ыедлеипо, а потом все быстрее выскакивали на ее поверхность. Кювета начала кипеть пузырьками водорода... . Какие химические ошибки допущены в указанном отрывке Какими способами нз полученного раствора можно выделить золото и изготовить новую медаль  [c.451]

    В качестве основного сырья для производства полиамидных смол — анида и капрона — используются фенол и бензол. В последние годы разработаны новые типы полиамидных смол, дающих волокно высокого качества и получаемых из алифатических углеводородов. Так, разработанная советскими учеными и технологами [12, 13, 97] реакция теломеризации позволяет превратить этилен при взаимодействии его с четыреххлористым углеродом в смесь а, а, а, со-тетрахлорпарафинов из которых легко получаются волокнообразующие сй-аминокарбоновые кислоты, например ш-аминоэнан-товая кислота МНг(СН2)вС00Н. [c.695]

    В круглодонной колбе растворяют 23,7 г о-толуидина в 133,3 мл 40%-ной бромоводородной кислоты. Пол ученный раствор гидро-бромида о-толуидина охлаждают до 10°С и прибавляют к нему порциями 15,3 г нитрита натрия. После прибавления каждой порции колбу закрывают корковой пробкой и взбалтывают до исчезновения бурых паров. Реакцию диазотирования проводят при температуре не выше Ю С. После ее окончания прибавляют 0,7 г свежеприготовленного порошка меди (см. работу 4.7.3), соединяют колбу с шариковым холодильником и осторожно нагревают на водяной бане до начала выделения азота. Реакцию разложения соли диазония ведут медленно, при необходимости охлаждая содержимое ледяной водой. Процесс заканчивают, нагревая смесь на водяной бане в течение 30 мин. Образовавшийся о- бромтолуол из этой же колбы перегоняют с водяным паром. Дистиллят подщелачивают [c.184]

    Смесь цинкового порошка с жидким стеклом в соотношении 80 20 уже является цинкпротекторным лакокрасочным материалом, но севастопольские ученые для придания покрытиям из этой краски более высокой водостойкости предложили вводить в исходные композиции отвердитель жидкого стекла — растворимые кальциевые соли фосфорной кислоты..  [c.73]

    Впервые атомные спектры наблюдал Мел-вилл около 1750 г. он смешивал различные соли с горючими веществами, поджигал эту смесь и пропускал свет от ее пламени через щель и призму. После изобретения в 185У г. спектроскопа были тщательно измерены длины волн спектральных линий многих химических элементов. Шведский ученый Ангстрем измерил длины волн четырех спектральных линий атомарного водорода. Никому не известный школьный учитель из Швейцарии Бальмер установил уравнение, выра- [c.67]

    Другое направление - создание замкнутых структур, содержащих как атомы углерода, так и металла (их называют "мет-карами от англ. те1а1-сагЬоп ). Ученые из Пенсильванского университета испаряли лазером порошок, содержащий смесь фафита и титана, и получили достаточное для детального изучения количество фуллереноподобных структур, состоящих из 12 атомов углерода и восьми атомов титана. [c.167]

    Наиболее важная область применения окислительной циклизации ацетиленов была совсем недавно показана Зондгей-мером с сотрудниками, синтезировавшими целый ряд моноциклических сопряженных полиолефинов С(сн снР , где т = = 7,9, 10,12 и 15. К числу ранее известных соединений этой общей формулы относятся только чрезвычайно устойчивый, планарный, с совершенно выровненными связями бензол и неустойчивый, расположенный во многих плоскостях цикло-октатетраен с чередующимися одинарными и двойными связями. Такие макроциклические соединения были названы [Л ]-анну-ленами , N — число атомов углерода в цикле. Их получение, несомненно, свидетельствует о наступлении новой фазы в химии небензоидных ароматических соединений интересна теоретическая трактовка строения аннуленов. Общий подход к этой проблеме со стороны израильских ученых можно рассмотреть на примере [18 -аннулена. При конденсации гексадиина-1,5(Х1П) под воздействием ацетата меди и пиридина образуется очень сложная смесь углеводородов, которую можно разделить [c.320]

    Впервые химический лазер, основанный на реакции между водородом и хлором, был разработан американскими исследователями, Однако им не удалось достичь успеха, поскольку затраты энергии на инициирование реакции, т. е. создание атомного хлора, во много раз превышали энергию лазерного возбуждения. Таким образом, данная реакция цепная, и в ней есть акт, дающий неравновесно возбужденные продукты, но она протекает с недостаточной скоростью. Поэтому для создания высокоэффективного химического лазера следует выполнить одновременно несколько условий, а именно реакция, лежащая в основе такого лазера, должна быть быстрой, идти по цепному механизму и должна приводить к образованию неравновесных возбужденных молекул, колебательная энергия которых значительно превышает энергию поступательного и вращательного движений. Идея использования быстрых цепных реакций была выдвинута впервые советскими учеными. В настоящее время широкое применение нашли цепные реакции водорода или дейтерия с фтором, в результате которых образуются возбужденные молекулы НР или ОР с неравновесным распределением энергии по колебательным степеням свободы. Излучение генерируется благодаря колебательным переходам в этих молекулах. Длина волны X излучения для НР составляет 2,7—3,2 мкм, а для ОР — 3,7—4,4 мкм. При добавлении оксида углерода (IV) к смеси дейтерия и фтора молекулы СОз забирают энергию у молекул ОР и переизлучают ее а области 10 мкм. Сравнительно недавно в США был создан хими ческий лазер, излучение в котором составляет 1,3 мкм. В его основу положена реакция молекулярного хлора с пероксидом водорода. Дело в том, что в растворе пероксид водорода диссоциирует на ионы Н+ и НО2 , которые активно реагируют с молекулами хлора. При этом взаимодействии возникает возбужденная молекула кислорода. Это так называемый синглетный кислород, в молекуле которого возбуждены не колебания, а долго живущие электронные состояния. Газообразный хлор пробулькппает через жидкую смесь пероксида водорода и гидроксида натрия, который [c.101]

    В 1880 г. английский ученый Дж. Хэнней опубликовал сообщение о получении искусственных алмазов. Он нагревал до красного каления заклепанные трубы типа орудийных стволов, в которые была помещена смесь углеводородов, растительного масла и металлического лития. Двенадцать из полученных им кристалликов хранятся в Британском музее. [c.52]


Смотреть страницы где упоминается термин Учение о смесях: [c.590]    [c.314]    [c.193]    [c.518]    [c.337]    [c.27]    [c.182]    [c.19]    [c.41]    [c.259]    [c.668]    [c.61]    [c.2272]    [c.261]    [c.29]    [c.19]    [c.166]    [c.308]   
Смотреть главы в:

Синтетические моющие и очищающие средства -> Учение о смесях




ПОИСК





Смотрите так же термины и статьи:

Моющие синтетические средства учение о смесях



© 2024 chem21.info Реклама на сайте