Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переработка аммиака в сульфат аммония

    Поглощение СОг аммиачной водой применяется прежде всего для предварительной очистки коксового газа перед разделением его методом глубокого охлаждения. Обычно эти установки работали при давлении 10—25 ати. В новейших установках давление не превышает 15 ати, что позволяет получить водород более высокой чистоты. В особых случаях, налример яри получении раствора карбоната аммония, предназначенного для дальнейшей переработки в сульфат аммония, СОг поглощается аммиачной водой под атмосферным давлением. Особое внимание следует уделять улавливанию аммиака из газа, выходящего из абсорбера. [c.345]


    Получение сульфата аммония из сернистого газа, аммиака и кислорода (без применения серной кислоты) заключается в получении сульфита аммония и окислении его кислородом под давлением, в результате чего образуется сульфат аммония. Дальнейшая переработка раствора сульфата аммония в сухую соль осуществляется обычным путем. [c.156]

Рис. 41. Схема методов утилизации аммиака из коксового газа с переработкой в сульфат аммония Рис. 41. <a href="/info/19560">Схема методов</a> <a href="/info/743917">утилизации аммиака</a> из <a href="/info/109864">коксового газа</a> с переработкой в сульфат аммония
    Основное количество аммиака получают в результате промывки поступающей из печей парогазовой смеси серной кислотой или водой. В первом случае получается сернокислая соль аммиака — сульфат аммония [(ЛШ4)2304], а во втором — слабая аммиачная вода, которая после соответствующей переработки в колоннах превращается в концентрированную аммиачную воду или нашатырный спирт. [c.47]

    Смесь аммиака и паров воды из верхней части колонны 1 при 100—102°С поступает в межтрубное пространство водяного трубчатого дефлегматора 2. Охлажденная здесь до 95— 96°С паро-аммиачная смесь, содержащая 8—10 объемн. % N1 3, направляется на переработку в сульфат аммония. [c.501]

    Улавливание пиридиновых оснований совместно с аммиаком, не является обязательным. Даже при производстве сульфата аммония на ряде зарубежных установок пиридиновые основания из маточного раствора не выделяют. Они улавливаются вместе с бензольными углеводородами и извлекаются при промывке последних раствором серной кислоты в отделении переработки бензола. [c.186]

    Коксовый газ используется для обогревания коксовых печей (при сгорании 1 выделяется 4300 ккал), но основные количества его подвергаются химической переработке. Из него выделяют водород для синтеза аммиака, из которого затем получают азотное удобрение — сульфат аммония  [c.364]

    С газ направляют в паровой подогреватель 1, в котором его нагревают до бС—вОХ, а затем пропускают через сатуратор 2, где содержащийся в газе аммиак поглощается серной кислотой, поступающей из напорного бака 14. После отделения от брызг кислого маточного раствора в ловушке 3 и охлаждения водой в конечном холодильнике (на рнс. не показан) газ очищают от бензольных углеводородов и направляют потребителям для дальнейшего использования. В выходящий из подогревателя 1 газ по трубопроводу 16 вводят аммиак, получаемый при переработке надсмольной воды в аммиачно-известковой колонне (на рис. не показана). При взаимодействии серной кислоты с аммиаком образуется сульфат аммония  [c.230]


    На коксохимических предприятиях обычно применяют полупрямой способ переработки аммиака в сульфат аммония. По [c.203]

    Вьщелению химических веществ из коксового газа предшествуют операции охлаждения, осушки и очистки от вредных соединений. Для переработки газ должен быть охлажден до температуры 25—35°С и очищен от смолы и воды. Это объясняется следующими обстоятельствами. Низкая температура является оптимальной при улавливании из газа аммиака, бензольных углеводородов и сероводорода. Аммиак хорошо растворяется в воде, причем при понижении температуры воды растворимость улучшается. Присутствие в газе паров смолы и воды приводит к загрязнению аппаратуры и отложению конденсата в газопроводах. Пары смолы снижают поглотительную способность масла, используемого для абсорбции бензольных углеводородов из газа, и ухудшают качество получаемого сульфата аммония. Охлаждение газа резко снижает его объем и тем самым способствует уменьшению расхода энергии на перемещение газа. [c.164]

    Обычный косвенный способ получения сульфата аммония имеет тот недостаток, что при условиях, поддерживаемых в обычных скрубберах, вместе с аммиаком абсорбируется большая часть двуокиси углерода и лишь относительно малое количество сероводорода (15—20%) основную же массу НаЗ приходится затем удалять сухим методом в очистных ящиках. Включение перед аммиачными скрубберами дополнительного абсорбера для избирательного извлечения сероводорода (или замена одного из скрубберов избирательным абсорбером), в котором достигаются высокие относительные скорости раствора и газового потока, позволяет полнее извлечь НаЗ и лучше использовать имеющийся аммиак, соединяющийся с Н2З, а не с СОз- Более того, аммиак, содержащийся в неочищенном газе, может быть дополнен частичной рециркуляцией аммиачного раствора (из которого кислые газы предварительно выделены в отдельной отпарной колонне) или добавкой газообразного аммиака к поступающему газу. При правильном осуществлении такого процесса в избирательном абсорбере из газа удается извлечь большую часть содержащегося в нем сероводорода. Выделение Н2З, СОд и H N из раствора аммиака в отпарной колонне, установленной перед аммиачной отгонной колонной, позволяет полностью разделить дальнейшую переработку аммиака и кислых газов. Это исключает ряд трудностей в работе сатуратора, а ири производстве концентрированной аммиачной воды позволяет получать более чистую сырую аммиачную воду. И, наконец, при избирательной абсорбции сероводорода получается поток кислого газа с высокой концентрацией сероводорода, что желательно для последующей переработки его на серу или серную кислоту. Большинство этих преимуществ характерно также и для полупрямого метода очистки газа от аммиака (см. гл. десятую). [c.74]

    Поскольку при обычных методах очистки каменноугольного газа пиридиновые основания удаляются независимо от того, проводится их дальнейшая переработка для получения товарных продуктов или нет, основные усилия при разработке процессов извлечения были направлены на максимальное увеличение полноты абсорбции оснований при работе системы очистки газа и достижение оптимальных условий для последующего их выделения. Вследствие щелочного характера пиридиновых оснований наиболее целесообразно извлекать их абсорбцией серной кислотой с последующей нейтрализацией абсорбционной жидкости и разделением и очисткой абсорбированных соединений. На этом нринцине основаны все промышленные процессы. Пиридиновые основания абсорбируют одновременно с аммиаком в общем сатураторе, или в отдельном аппарате, установленном по потоку после главного сатуратора получения сульфата аммония. Сульфаты пиридиновых оснований нестойки при повышенных температурах. Поэтому полнота извлечения их абсорбцией серной кислотой определяется равновесием между пиридиновыми основаниями, содержащимися в газе и в абсорбционной жидкости. Равновесия для газа и жидкости различного состава нри разных температурах были изучены экспериментально [37—39, 41]. Из проведенных опытов [37] следует, что для практически полного извлечения пиридинов при рабочей температуре около 100° С содержание серной кислоты в абсорбционном растворе должно составлять около 200% стехиометрического количества. Поскольку условия процесса на разных [c.244]

    В 1925-26 году ожидается получение 100 проц. аммиака— 4820 тонн, из коих на производство сульфата аммония предположено израсходовать 1030 тонн. На продажу, в виде концентрированной аммиачной воды для содовых заводов, будет отпущено 1100 тонн (=5500 тонн 25 проц. аммиачной воды) и на переработку на Азотный Сталинский завод 2400 тонн. [c.26]

    Аммиак является основным и наиболее ценным компонентом надсмольной воды В ней содержится до 0,1 % аммиака от его ресурсов на 1 т сухой шихты Количество подлежащей переработке избыточной надсмольной воды обычно составляет 10—12 % от коксуемой шихты Использование этих значительных ресурсов аммиака при больших масштабах коксохимического производства представляет весьма важную задачу, так как получаемый при этом аммиак может быть использован для получения сульфата аммония и выделения пиридиновых оснований Примерный состав надсмольной аммиачной воды, поступающей на переработку (при смешивании вод газосборников и первичных холодильников), г/л [c.203]


    Фосфогипс — это сульфат кальция, образующийся при переработке фосфатов. Процесс конверсии фосфогипса представляет собой его взаимодействие с газообразными углекислотой и аммиаком. При этом образуются карбонат кальция и сульфат аммония, являющийся ценным продуктом. [c.161]

    Из надсмольной воды при ее переработке выделяется аммиак, который совместно с аммиаком коксового газа используется для получения сульфата аммония и концентрированной аммиачной воды. [c.433]

    Перед использованием коксового газа в качестве компонента синтеза различных химических веществ его очищают от примесей углеводородов, аммиака, сернистых соединений, смолы, твердых частиц, влаги и т. д. В существующих схемах переработки коксового газа применяют отстаивание и конденсацию в специальных сборниках, очистку в электрофильтрах, поглощение в сатураторах и абсорберах. В качестве попутных продуктов и полупродуктов переработки получают сырой бензол, смолу, надсмольную воду и сульфат аммония. [c.40]

    Из приведенных расчетных данных видно, что при использовании разработанной технологической схемы переработки кремнефтористых газов возникает возможность на 1 m фтора получить около 2 т фтористого кальция, 3,5 т сульфата аммония и около 0,7 тп белой сажи. Все количество введенного аммиака (после двухкратного его использования) выводится в виде сульфата аммония. [c.241]

    Этот способ переработки сульфата алюминия представляет, в частности, интерес при получении из него гидроокиси, а затем окиси алюминия. В этом случае алюмо-аммониевые квасцы вторично перекристаллизовывают и затем обрабатывают их водным раствором аммиака для осаждения гидроокиси алюминия, а образующийся раствор сульфата аммония возвращают в процесс [c.658]

    Надсмольная вода представляет собой слабый водный раствор аммиака и аммонийных солей с примесью фенола, пиридиновых оснований и некоторых других продуктов. Из надсмольной воды при ее переработке выделяется аммиак, который совместно с аммиаком, коксового газа используется для получения сульфата аммония и концентрированной аммиачной воды. [c.460]

    Таким образом общими для всех схем конденсационно-улавливаюших установок являются следующие процессы очистка газа (от сернистых соединений, нафталина, угольной пыли, частично конденсирующейся на коксохимических заводах в фусах, и т. д.), улавливание полупродуктов, идущих на дальнейшую переработку в специальные цеха и отделения, и, наконец, выпуск в виде готовых товарных продуктов аммиака, сульфата аммония, бензола, бензина и др. Очищенный газ на производстве называется обратным газом . [c.376]

    Блестящее решение проблемы сокращения расходов серной кислоты и рационального использования ее в отработанном виде заключается в сочетании производства синтетического этилового спирта с каким-либо другим химическим производством. В частности, при организации в промышленных масштабах синтеза этилового спирта из этилена коксового газа совершенно не нужно стремиться к получению высококонцептрировапной серной кислоты после гидролиза, поскольку в комплекс химической переработки продуктов коксования каменного угля входит также производство синтетического аммиака, и поэтому гидролиз этилсерной кислоты можно проводить смесью паров воды и аммиака, в результате чего образуется водный раствор сульфата аммония. В производстве этилового спирта из этилена газов крекинга и пиролиза нефти параллельно можно получать изопропиловый, бутиловый и амиловый спирты. В этом случае 80—85 %-ную серную кислоту после гидролиза (в производстве этилового спирта) без предварительного концентрирования можно использовать в производстве изопропилового и дру1 их высших спиртов. [c.24]

    Таким образом, в отделении конденсации получают три промежуточных продукта, подвергаюЕцихся последующей переработке. Каменноугольную смолу подвергают в смолоперегонном цехе ректификации. Из надсмольной воды выделяют аммиак, поступающий в сульфатное отделение для получения сульфата аммония. Из коксового газа последователгьно извлекают аммиак и пиридиновые основания, сероводород, а также смесь ароматических углеводородов (бензол, толуол, ксилол и др,) под названием сырой бензол . Очищенный коксовый газ (обратный) используется для отопления коксовой батареи, как коммунально-бытовой газ избыток газа часто сжигается. [c.61]

    В качестве примера практического применения сернокислотного метода переработки берилла на рис. 31 приведена технологическая схема производства гидроокиси бериллия, используемая фирмой Браш бериллиум . Активирование берилла перед сернокислотной обработкой производится по этой схеме термическим методом. Концентрат, предварительно нагретый, плавят при 1700°С. Плавы выливают в закалочную ванну с водой. Классификация на грохоте стекловидных агломератов, полученных при закалке, позволяет отделить куски размером более 13 мм, в которых возможна рекристаллизация (что затруднит последующее взаимодействие с серной кислотой). Эти куски направляются в начало процесса. Отсеянный спек подвергают термообработке при 900° во вращающейся печи. Затем его измельчают в шаровой мельнице, которая работает в замкнутом цикле с воздушным классификатором. Мокрое измельчение не применяется, чтобы при сульфатизации не разбавлять серную кислоту. Измельченный спек через дозатор поступает в железный аппарат предварительного смешения. Туда же поступает серная кислота (93%) в количестве, несколько превышающем то, которое необходимо для образования сульфатов бериллия и алюминия. Избыток серной кислоты нужен в дальнейшем для получения сульфата аммония при взаимодействии с аммиаком. Кислая пульпа впрыскивается тонкой непрерывной струей в стальной барабан, нагреваемый газом до 250—300°. Пульпа попадает на его раскаленные стенки. При этом почти мгновенно сульфатизируются ВеО и AI2O3. Полнота сульфатизации 93—95%. Такой метод значительно продуктивнее одновременной сульфатизации больших количеств окислов. Отходящие газы пропускают через циклон, где оседают тонкие [c.199]

    Получение сульфата аммония из аммиака коксового газа. В коксовом газе содержится 7—10 г/м аммиака, который перерабатывают в сульфат аммония чаще всего по так называемому полупрямому способу. Процесс, проводимый по этому способу, состоит из следующих стадий первичного охлаждения коксового газа и выделения из него смолы переработки надсмоль-ной воды, образующейся при охлаждении газа, с последующей отгонкой аммиака переработки аммиака в сульфат аммония. [c.229]

    В основе способа переработки подсмольной воды лежит подкисление с целью связывания содержащегося аммиака в сульфат аммония с последующей перегонкой при улавливании пародистиллятов уксусной кислоты гидратом окиси кальция и летучих фенолов — раствором едкого натра и выделением из упаренной подсмольной воды плотного остатка и кристаллического сульфата аммония. [c.182]

    В промышленности су. 1ьфат аммония может быть получен нейтрализацией серной кислоты аммиаком коксового газа или синтетическим аммиаком, при взаимодействии гипса с карбонатом аммония и путем переработки растноров, содержащих сульфат аммония и получаемых в качестве побочного продукта при производстве капролактама. [c.203]

    В СССЛ в настояш.ес время сульфат аммония получают лишь нейтрализацией серной кис.чоты аммиаком коксового газа и переработкой растворов от производства капролактама. Нейтрализация серной кислоты синтетическим аммиаком пе экономична, поскольку последний целесообразнее использовать для выработки аммиачной селитры или карбамида. [c.203]

    Актуальность вопросов сохранения среды обитания, с одной стороны, выживаемость и подъем экономики в условиях конкуренции, с другой стороны, диктуют неизбежность технического перевооружения энергетики на базе технологий комплексного и комбинированного использования угля. За рубежом освоены промышленные технологии, в которых из бурых углей получают син-тез-газ, топливо для котлов, нафту для производства бензина, ксенон и криптон, аммиак, фенол, сульфат аммония, углекислоту. Это прообраз перевооружения угольной промышленности на иной технологической и технической основе. Новое поколение технологий переработки угля связано с вовлечением нетрадици- [c.5]

    Поглощение аммиака из коксового газа можно производить в сатураторах (сатураторный метод) или в скрубберах (бессатура-торный метод) До последнего времени переработку аммиака коксового газа в сульфат аммония производили в сатураторах, в которых совмещены процессы поглощения аммиака серной кислотой и кристаллизации сульфата аммония. Совмещение этих двух процессов в одном аппарате не позволяет поддерживать техиоло-гический режим, который бы являлся оптимальным одновременно для обоих процессов, т. е. обеспечивал бы более полное поглощение аммиака из коксового газа и способствовал бы образованию крупнокристаллического сульфата аммония. Было установлено, что наиболее рационально процессы поглощения и кристаллизации проводить раздельно — поглощение аммиака вести в скрубберах, а кристаллизацию сульфата аммония на кристаллизационных установках (бессатураторный метод). По этому методу теперь работают многие заводы и получают крупнокристаллический продукт с хорошими физическими свойствами. [c.454]

    Фельд и Буркгейзер разработали сложные процессы совместной абсорбции сероводорода и аммиака с последующей переработкой этих соединений на сульфат аммония и элементарную серу. Эти процессы, включая окисление сероводорода, рассматриваются в гл. девятой. Были предложены и в ряде случаев осуществлены в промышленном масштабе многочисленные видоизменения этих процессов очистки. Им посвящен весьма подробный обзор [15]. Несмотря на обширные исследования разработать удовлетворительный метод очистки газа, основанный на принципах, предложенных Фельдом, не удалось. В опубликованной работе [16] дается анализ проблемы очистки каменноугольных газов от сероводорода и аммиака в свете современных экономических условий. Показано, что совместное извлечение с последующей переработкой обоих компонентов на сульфат аммония является наименее целесообразным направлением процесса очистки газа. [c.73]

    Выделение и гидролиз цианистого водорода проводили по схеме, намечаемой для переработки регенераторных газов аммиачной сероцианоочистки. Аммиак удаляли обработкой парогазовой смеси кислым раствором сульфата аммония. Цианистый водород поглощали из 1кислых газов разбавленным раствором серной кислоты, затем отдували его из раствора газом при дистилляции и вместе с газом-носителем подавали в реактор для гидролиза. [c.7]

    Отличительной особенностью прямого метода является то, что перед улавливанием аммиака в сатураторе газ охлаждается до 68 °С Выделившийся из газа водяной конденсат (надс юльная вода) полностью используется для пополнения воды цикла газосборника и, таким образом, избытка надсмольной воды не получается Весь аммиак газа улавливается в сатураторе с получением сульфата аммония Достоинство метода состоит в ,меньше-нии эксплуатационных расходов за счет снижения расхода пара и электроэнергии на переработку аммиачной воды Широкое распространение этот метод не получил по следующим причинам наличие большого количества аппаратов, работающих под разрежением, что увеличивает расход мощности нагнетателя газа, интенсивное протекание коррозионных процессов в сатураторе, что обусловливается присутствием хлористого аммония и обра зованием летучей соляной кислоты, недостаточная очистка газа от туманнообразной смолы, что приводит к образованию большого количества кислой смолки и загрязнению сульфата аммония, получение мелкокристаллической соли, что вызвано высокой температурой процесса, громоздкость аппаратурного оформления из-за высокой температуры газа и большого его влагосодержания [c.222]

    Для синтеза аммиака раходуется около 10—20% азота угля. При среднем содержании,азота в угле около 2 о выход аммиака на 1 т сухого угля в процессе.коксования составит 2—4 кг. Аммиак распределяется в коксовом газе и надсмольной конденсационной воде. Он присутствует в свободном и связанном в воде виде (хлористый, ро-данистьп , сернокислый и сернистокислый аммоний). Аммиак получают для дальнейшей переработки в виде 20—25%-ного водного раствора, либо в виде сульфата аммония, идущего в сельское хозяйство как удобрение. [c.96]

    По этому способу, как видно из описания, сульфат аммония получается путем извлечения сего аммиака серной кислотой прямо из газа, без его предварительного охлаждения. Так как коксовый газ перед сатуратором -не охлаждается, то не происходит конденсация из него водяных паров и образование надсмоль-ной аммиачной воды, а Следовательно, отсутствует необходимость переработки в колоннах слабой аммиачной воды. Кроме того, отпадает надобность в специальном подогреве газа перед сатуратором для выпаривания избытка маточного раствора в ванне сатуратора. [c.105]

    Процесс п е р с г о и к и каменного угля заключается в том, что каменный уголь нагревается в ретортах без доступа воздуха. Под влиянием высокой температуры (около 1200°) он разлагается, выделяя газы и пары, удаляющиеся из реторты. В реторте остается сухой остаток—кокс. При охлаждении газов и паров последние сгущаются в жидкость, а газы (светильный газ), очищенные от примесей, собираются в газохранилища (газгольдеры) и используются для освещения. Жидкие продукты производства состоят из водной жидкости и смолы, при переработке каменноугольной смолы получают бензол, нафталин, карболовую кислоту и другие продукты. Водная жидкость содержит аммиак и различные его соли. Частично аммиачную воду перерабатывают на аммиак. Для этого ее обрабатывают известью, отгоняю1 аммиак и поглощают его водой—получают водный а.ммиак, или нашатырный спирт. Частично аммиачную воду перерабатывают в аммонийные соли, главным образом сернокислый аммоний (сульфат аммония) и азотнокислый аммоний (аммиачная селитра) Эти соли образуются путем обработки аммиачной воды серной и азотной кислотами. [c.219]

    В сатураторе наряду с сульфатом аммония образуются продукты реакции серной кислоты с пиридиновыми основаниями, содержащимися в коксовом газе. Эти продукты широко используются для производства ряда медицинских препаратов, витаминов и др., поэтому для их выделения часть маточного раствора из приемника 10 подают в нейтрали затор пиридиновой установки (на рисунке не показан). Здесь кислый маточный раствор нейтрализуется газообразным аммиаком, выделенным из надсмольцой воды сульфатные соли пиридина разлагаются, выделившиеся пиридиновые основания испаряются, поскольку температура в нейтрализаторе за счет тепла реакции достигает 100° С и более. Далее при охлаждении до 28—30° С пиридиновые основания К9нденсируются и поступают на дальнейшую переработку. [c.231]


Смотреть страницы где упоминается термин Переработка аммиака в сульфат аммония: [c.200]    [c.369]    [c.235]    [c.68]    [c.45]    [c.69]    [c.240]    [c.223]    [c.66]    [c.467]   
Смотреть главы в:

Технология азотных удобрений -> Переработка аммиака в сульфат аммония




ПОИСК





Смотрите так же термины и статьи:

Аммиак Аммоний

Аммиак сульфата аммония

Аммония сульфат



© 2024 chem21.info Реклама на сайте