Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение ионов методом ионообменной хроматографии

    Определение ионов натрия в растворе методом ионообменной хроматографий. Существующие способы количественного определения ионов натрия сложны, продолжительны и не отличаются большой точностью. Ионообменный способ значительно проще, занимает меньше времени и дает лучшие результаты. Метод основан на том, что при пропускании анализируемого раствора хлористого натрия через катионит в Н-форме выделяется соляная кислота в количестве, эквивалентном содержанию соли в растворе, а следовательно, и ионов натрия. Процесс протекает по схеме [c.197]


    Методы ионообменной хроматографии рассматриваются как эффективные для отделения тория от р. з. э., образующихся в результате деления ядер [5, 2141], однако конкретное описание их в литературе почти не приводится [617, 1649. Возможность отделения тория от р. з. э. и других элементов путем сорбции на ионообменных смолах обусловлена малым радиусом и большим зарядом ионов тория. Этим объясняется сильная сорбция его катионитами из кислых растворов и трудность десорбции при действии концентрированных соляной или азотной кислот. Так как для вымывания р.з.э. с таких колонок расходуются довольно значительные объемы указанных кислот, сорбцию чаще всего осуществляют из разбавленных растворов, пользуясь для селективного вымывания тория растворами комплексообразующих агентов с определенным значением pH, например лимонной или молочной кислот [5. 93. 208]. [c.120]

    Определение ионов методом ионообменной хроматографии [c.122]

    Сущность работы. Общеизвестны затруднения, возникающие при определении ионов II и III аналитических групп в присутствии фосфат-ионов. Поэтому большое значение имеют методы, позволяющие осуществлять предварительное их удаление. Существенное преимущество перед другими методами имеет метод ионообменной хроматографии. [c.102]

    Во многих методах определения магния мешают фосфат-ионы, поэтому их предварительно удаляют либо в виде труднорастворимых фосфатов железа или циркония, или же методом ионообменной хроматографии. [c.45]

    Ионообменная хроматограмма образуется при условии различий в сорбируемости ионов. Эти различия количественно определяются различиями в константах ионного обмена. Собственно говоря, это и позволяет использовать фронтальную ионообменную хроматографию для определения констант ионного обмена. Авторы данного метода поставили перед собой задачу рассмотреть случай образования фронтальной хроматограммы трех ионов, пренебрегая факторами размывания границ хроматографических зон. [c.131]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]


    Методы ионообменной хроматографии используются преимущественно для разделения ионов. Количественные определения компонентов после разделения могут быть выполнены любым подходящим методом. [c.355]

    Вследствие своей универсальности ионообменно-хроматографический метод с успехом применяется для решения разнообразных задач аналитической химии для обнаружения, разделения, концентрирования, а также определения неорганических и органических соединений, находящихся в водных или водно-органических растворах в виде ионов. Особенно эффективно используется ионообменная хроматография при анализе неорганических соединений. С помощью ионообменных сорбентов возможно разделение смесей любой сложности. [c.190]

    Определение иона С1 . Методом ионообменной хроматографии можно быстро и надежно определять содержание хлорид-анионов при массовых анализах поваренной соли, применяемой в пищевой промышленности. [c.383]

    При определении 58,5 мкг S N стандартное отклонение и коэффициент вариации оптической плотности составляют 0,0033 и 1,42% соответственно. Определению S N этим методом мешают многие ионы ( N , S , J-, Вг , l , NH Ni +, o +, Bi"+, d Mn +, u +, Zn +, AP+, Fe +), которые необходимо предварительно отделять методом ионообменной хроматографии. [c.108]

    Разработан оригинальный метод — пламенная кондуктометрия — для определения ионов щелочноземельных металлов и тяжелых щелочных металлов (К КЬ , Сз , 5г и Ва " ), получающихся после разделения ионов металлов методом ионообменной хроматографии [71]. Измеряют электропроводность пламени, в котором распыляют анализируемый раствор. [c.33]

    Ионообменная хроматография приобрела за последние десятилетия первостепенное значение как метод препаративного разделения и аналитического определения самых различных смесей неорганических и органических соединений. В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов, содержащихся в хроматографируемом растворе, на подвижные ионы веществ, называемых ионитами или ионообменниками. Разделение смеси содержащихся в растворе ионов основано на неодинаковой способности их к обмену с ионами ионита. [c.61]

    Ю. Ю. Лурье и сотрудники показали, что методом ионообменной хроматографии можно разделять катионы и анионы в процессе количественного анализа и концентрировать (накапливать) ионы на ионите для облегчения их последующего количественного определения. Можно отделять анионы, мешающие определению катионов, или отделять катионы, мешающие определению анионов. [c.116]

    По нерастворимому остову (матрице) ионообменника определенным образом распределены ковалентно связанные функциональные группы, способные к диссоциации. Чаще всего это сульфогруппы, реже карбоксильные группы (катионообменники) либо третичные аминогруппы или четвертичные аммониевые группы (анионообменники). Методом ионообменной хроматографии можно разделить такие соединения, которые в сильнополярных элюентах хотя бы частично диссоциируют. Разделение основано на различии сродства ионов к противоионам матрицы ионообменника и ионам, содержащимся в растворителе. [c.187]

    Для нахождения оптимальных условий хроматографического разделения ионов обычно определяют сорбцию ионов ионообменными смолами из тех или иных растворов. Из применяемых в хроматографии методов определения сорбируемости ионов наиболее простым является метод определения коэффициента распределения того или иного иона между ионообменной смолой п растворами. [c.228]

    Методы ионообменной хроматографии применяют для разделения нейтральных сахаров, используя их способность образовывать комплексы с борат-ионом. Дауэкс-1 в боратной форме применяют для последовательного элюирования нескольких сахаров водными буферными растворами бората с pH 8—9 [56, 134, 135]. Применяют также вымывание раствором с градиентом концентрации хлористого натрия и бората в сочетании с непрерывным определением количества гексоз в отмеряемых порциях элюата [136]. Выходы составляют около 95% для количеств от 0,25 до 1 мг. Разделения этим методом менее четки, чем по методике Холла [133]. Катионы из препаратов обычно удаляют с помощью дауэкса-50 (Н+), а остаточную борную кислоту — в виде ее летучего метилового эфира упариванием с избытком метанола при пониженном давлении. [c.209]

    Особым видом ионообменной хроматографии, применяемым для анализа органических и неорганических ионов, не поглощающих в УФ-области, является ионная хроматография [16]. В этом методе ионообменное разделение ионов сочетают с кондукто-метрическим определением их. Поскольку высокочувствительное кондуктометрическое определение возможно только при невысокой фоновой электропроводности потока жидкости, поступающей в детектор, фоновый электролит подвижной фазы предварительно удаляют пропусканием его через ионообменные смолы. [c.37]


    Ионообменная хроматография. С ее помощью можно отделять мешающие определению элементы или, наоборот, определяемые элементы при прохождении анализируемого раствора через ионообменную колонку. Если определяемый элемент затем выделить в небольшой объем растворителя, можно сконцентрировать следовые количества элемента до легко измеримых концентраций, и поэтому такой способ концентрирования приобретает все большее значение при анализе следовых количеств элементов. Четкость разделения элементов, сорбируемых ионообменной смолой, можно увеличить, применяя при элюировании комплексообразующие реагенты. Особенно эффективным вариантом метода является нспользование комплексообразующих ионообменных смол. Эти смолы содержат активные группы, способные к образованию специфичных комплексов с определяемыми ионами, которые задерживаются смолой. При этом происходит эффективное разделение. [c.421]

    Так как в пищевой промышленности и медицине применяют только ь-изомеры аминокислот, рацемические смеси необходимо разделять на отдельные энантиомеры. Для этой цели используют различные хроматографические методы, в том числе и основанные на ионном обмене. Химические методы разделения, связанные с взаимодействием рацематов с определенными асимметрическими соединениями, достаточно сложны и не находят применения в промышленных условиях. Гораздо более эффективным является ферментативный метод разделения рацематов аминокислот, впервые разработанный и использованный японскими исследователями. В основу метода положена способность фермента ацилазы ь-аминокислот специфически гидролизовать только ацилированные ь-аминокислоты без воздействия на О-сте-реоизомеры. Ацилированные аминокислоты, полученные методом химического синтеза, подвергаются воздействию иммобилизованного фермента ацилазы, причем после полного ферментативного гидролиза образуется смесь ацилированной о-аминокислоты и свободного ь-стереоизомера, легко разделяющиеся простой кристаллизацией или посредством ионообменной хроматографии. [c.22]

    Ионообменная хроматография имеет широкие границы применения, например, метод этот используют для определения концентрации солей в растворах электролитов для разделения ионов путем выделения одного из них (или группы ионов) щ смеси для концентрирования веществ из сильно разбавленные растворов для удаления из раствора ионов, мешающих выполнению анализа. [c.58]

    Ионообменная хроматография очень удобна для концентрирования ионов в растворах с очень низкой концентрацией, поскольку позволяет не обрабатывать большие объемы исходного раствора, чтобы получить измеримые количества определяемых ионов. Поглощенные ионы можно элюировать малым объемом подходящего элюента и таким путем достичь высокой степени концентрации. Этим способом концентрируют, например, промышленные и природные воды для определения в них содержания некоторых тяжелых металлов. В подобных случаях ионообменная хроматография предпочтительнее экстракционных методов концентрирования, так как экстрагирование объемов от нескольких до нескольких десятков литров жидкости не особенно удобно. Этот же принцип используют при определении Fe +, u + и РЬ + в вине, Са + и в молоке, различных металлов в моче и других биологических жидкостях. [c.420]

    Ионообменная хроматография разработана и практически используется для выделения сульфатов при анализе многочисленных природных и промышленных объектов [407]. Наиболее часто мешающие определению сульфатов ионы металлов отделяют пропусканием пробы через колонку, заполненную катионитом Амберлит IR-120 в Н -форме [1071]. Катионообменный метод используют при анализе природных, морских, океанических и сточных вод в зависимости от емкости смолы и минерализации образца регулярно регенерируют смолу промыванием соляной кислотой. [c.57]

    Однократный обмен между твердым телом, включающим подвижные ионы, и раствором может служить методом очистки лишь в редких случаях огромной разницы в ионообменном поведении разделяемых элементов. Для разделения ионов с близкими свойствами применяют ионообменную хроматографию. По определению Ф. М. Шемякина, при хроматографировании смеси веществ происходит пространственно различное распределение каждого компонента данной смеси между двумя фазами с последующим полным разделением в пространстве этих компонентов путем промывания, вытеснения или выделения осадка. Причиной такого разделения является различие во взаимодействии каждого из компонентов данной смеси веществ, находящихся в первой фазе, называемой растворителем, со второй фазой, называемой сорбентом. [c.135]

    Как метод концентрирования хроматографию применяют сравнительно редко. Исключение составляет ионообменная хроматография, которая весьма удобна для выделения и абсолютного концентрирования определяемых ионов путем перевода из большого объема раствора в малый, а также хроматография на хелатных (комплексообразующих) сорбентах, отличающаяся высокой эффективностью и избирательностью извлечения ионов металлов. Такими способами концентрируют, например, микроколичества металлов при их определении в природных или сточных водах. Для аналогичных целей в органическом анализе широко применяют сорбцию на гидрофобных сорбентах. Ионный обмен, осуществляемый в статических условиях (без направленного движения жидкой и твердой фаз относительно друг друга), часто превосходит ионообменную хроматографию в качестве метода концентрирования. [c.78]

    Фосфорные удобрения содержат микрокомпоненты (медь, цинк, марганец, кобальт, никель, молибден и др.), оказывающие физиологическое действие на растения выпускаются и специальные микроудобрения. Разделение и количественное определение микрокомпонентов в них традиционными химическими методами длительно и трудоемко. Поэтому перспективно применение ионообменной хроматографии при анализе фосфорных удобрений и микроудобрений на содержание биологически активных ионов-микрокомпонентов. Например, известны ионообменные методы определения микрокомпонентов (меди, марганца, цинка, молибдена, жедеза) в солянокислых вытяжках из суперфосфата, а также в фосфоритной муке и апатитовом концентрате. Возможно использование катионного и анионного обмена для определения марганца, меди и железа в цитратных вытяжках из суперфосфата. [c.434]

    Определение содержания микроэлементов требует использования достаточно чувствительных и точных методов их определения. Для удаления ионов, мешающих определению микроэлементов, ионообменная хроматография представляется наиболее обнадеживающей. [c.433]

    Разделение ионов Ti и Zr методом ионообменной хроматографии основано на различии в сорбции указанных ионов катионообменником КУ-2 в 1 М растворе НС1. При этом ионы Zт сорбируются катионообменником, а ионы Ti полностью-вымываются из колонки. Ионы Zr десорбируются из колонки A M раствором НС1. Количественное определение указанных ионов фотометрическим методом основано на образовании хелатов Ti с хромотроповой кислотой при рН = 2—3 красного цвета (Ямакс = 470 нм), ионов Zr с арсеназо I при рН=1 синего-цвета (Я, акс = 580 нм). [c.233]

    Нитрат-иоиы часто мешают последующему определению рения. При спектрофотометрических определениях они окисляют восстановитель и рений в степени окисления менее семи, осаждаются при весовом определении, соэкстрагируются при экстракционнофотометрическом и флуориметрическом определениях. Для отделения или уменьшения концентрации нитрат-ионов растворы выпаривают до небольшого объема ( == 1—2 мл) иа водяной бане или нагретом блоке с температурой < 110° С более полное удаление нитрат-ионов достигается при многократном выпаривании растворов с соляной кислотой. Показана возможность применения для этой цели выпаривания с серной кислотой до начала выделения ее паров. Иногда рекомендуют применять методы ионообменной хроматографии. Нитрат-ионы можно удалить из сильнокислых растворов путем восстановления их до низших окислов формальдегидом [325]. [c.234]

    Метод ионообменной хроматографии представляет собой аналитический метод определения ионов, основанный на способности некоторых твердых или жидких веществ (ионообменников) обменивать ионы при контакте с растворами электролитов. В качестве ионообменников (ионитов) используются нерастворимые высокомолекулярные вещества природного или синтетического происхождения (на практике в основном применяют синтетические ионооб-менники), а также неорганические ионообменники. Ионообменни-ки бывают двух типов. [c.22]

    М а s h i к о J., Исследование в об.части иеорганического анализа. IV. Определение ионов натрия п калия в кислых источниках методами ионообменной хроматографии и пламенной спектрофотометрии, J, Pharma , Soa Japan, 76, 1272 (1956). а s о n A. ., Определение небольших количеств кальция в растениях, Analyst, 77, 529 (1952). [c.343]

    Нуклеозиды состоят из гетероциклического основания, присоединенного к молекуле рибозы. Так как в состав их молекул входят азотсодержащие группы, имеющие основной характер, они могут диссоциировать в растворах (при условии поддержания определенной кислотности) с образованием катионов. Поэтому для разделения этих веществ был выбран метод ионообменной хроматографии. Окончательные условия разделения были выйраны за счет варьирования ионной силы раствора буфера (рис. 9.7). [c.208]

    НОЙ кислоте барий открывают бихроматом, стронций — раствором сульфата кальция и кальций — раствором щавелевокислого аммония. В то же время количественный анализ смеси магния, кальция, стронция и бария связан с довольно значительными затруднениями. Объемный анализ позволяет методами осаждения определить магний (с фосфорной кислотой), кальций (перманганатометрически по оксалат-иону) и барий — с сульфат-ионом в присутствии родизоиата натрия. Однако все эти определения (за исключением определения магния) надежны лишь в растворах, содержащих один из щелочноземельных металлов. Аналогично обстоит дело и с весовым методом, в котором определению любого из щелочноземельных металлов обычно не мешает магний, но мешают другие щелочноземельные металлы может быть, единственным исключением является определение стронция в форме нитрата, при котором определению мешают не оба (кальций и барий) элемента, а лишь один барий. Все это делает целесообразным, а в немалом числе случаев и необходимым использование метода ионообменной хроматографии для предварительного разделения смесей щелочноземельных металлов. О работах Рейда [1] по разделению Ка и Ва уже упоминалось. На рис. 25 и 26 приведены схемы проведения процесса разделения смеси ВаС1з (0,046 М) и КаС12(0,104-Ю М). [c.152]

    Хроматографическое разделение смесей многозарядных ионов (железо, алюминий, хром и пр.) способом простого вытеснения оказалось сравнительно малоэффективным [6]. Задачи такого рода оказалось возможным успешно решать методом ионообменной хроматографии с использованием комплексообразующих реагентов. Этот вариант ионообменной хроматографии был предложен в связи с разработкой проблем атомной энергетики, в первую очередь в качестве этапа определения урана и для анализа гродуктов деления урана, в частности смесей редкоземельных элементов [2]. [c.231]

    Классическая ионообменная хроматография проводится на пористых нонооб-менниках, синтезированных из сополимера стирола и дивинилбензола. Изначально она была разработана для разделения химически очень близких редкоземельных элементов с помо1цью катионообменников. Определение ионов, собранных по фракциям, осуществляли титриметрическими методами. [c.283]

    Ионная хроматография - это вариант ионообменной хроматографии, включающий ионообменное разделение ионов и кондуктометрическое определение концентрации хроматографически разделенных попов. Поскольку высокочувствительное кондуктометрическое онределение ионов возможно только при невысокой фоновой электропроводности потока жидкости, поступающей в детектор, были предложены два основных метода ионной хроматографии. [c.3]

    Перевод ионообменной хроматографии в ранг экспрессных аналитических методов обусловлен созданием сорбентов низкой емкости (0,001-0,1 ммоль/г). Такие сорбенты состоят, как правило, из инертного ядра, на поверхности которого находятся способные к обмену ионами функциональные группы. Для определения катионов применяют поверхностно-сульфатированные катиониты, для переходных и тяжелых металлов - комплексообраз)лющие сорбенты с различными функциональными группами. Анионы разделяют на сорбентах, содержащих сильноосновные четвертичные аммониевые группы, селективность действия которых определяется структурой алкильного радикала. [c.94]


Смотреть страницы где упоминается термин Определение ионов методом ионообменной хроматографии: [c.100]    [c.10]    [c.106]    [c.229]    [c.221]    [c.265]    [c.307]   
Смотреть главы в:

Практикум по аналитической химии и физико-химическим методам анализа -> Определение ионов методом ионообменной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Ионная хроматография

Ионообменная хроматографи

Определение иония

Хроматография ионообменная

Хроматография методы

Хроматография на ионитах

Хроматография определение

Хроматография определение ионообменная



© 2025 chem21.info Реклама на сайте