Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация при каландровании

    В процессе каландрования резиновая смесь в зоне зазора между валками подвергается сдавливанию, расплющиванию и растягиванию. Под действием сил, возникающих при вращении валков каландра навстречу друг другу, происходит ориентация макромолекул каучука. В результате этого физико-механические свойства каландрованного листа резиновой смеси (сопротивление разрыву и относительное удлинение) в продольном и в поперечном направлениях становятся неодинаковыми. Эта неоднородность устраняется при правильном регулировании температуры нижнего валка, с которого снимается каландрованный лист. Чтобы предотвратить деформацию каландрованного листа по выходе из каландра, его быстро охлаждают. [c.374]


    Исчерпывающая математическая модель процесса каландрования должна была бы состоять из описания гидродинамики движения расплава между валками при одновременном рассмотрении деформации валков под действием распорных усилий, описания теплопередачи в каландруемом полимере и металлических валках и описания изменений в структуре материала под действием продольной вытяжки. С учетом реологических характеристик полимера, условий питания и технологических параметров (таких, как температура и частота вращения валков, величина зазора между валками, степень перекрещивания и контризгиба валков) такая модель позволила бы рассчитать истинную картину течения в зазоре, определить изменение ширины каландруемого изделия при его прохождении через зазор, установить поперечную разнотолщинность изделия, рассчитать распределение температур в изделии и оценить влияние зтих факторов как на переход каландруемой пленки к тому или иному валку, так и на возникновение нестабильных режимов работы. [c.589]

    Релаксация напряжения и пластическая деформация резиновой смеси при листовании. Усадка каландрованных смесей [c.283]

    Для процессов каландрования рекомендуется критерий продолжительности процесса деформации, позволяющий сопоставлять время пребывания материала в зазоре между валками каландра и в капилляре вискозиметра. Он пропорционален средней деформации [c.37]

    Третий метод, основанный на решении дифференциальных уравнений движения вязкой жидкости в области деформации, дает достаточно стройную и ясную картину процесса. Этот метод описания процессов вальцевания и каландрования обычно называют гидродинамическим. Здесь не учитывается динамика процесса (ускорения малы, поэтому ими пренебрегают), поэтому правильнее его называть гидромеханическим. [c.117]

    Решение системы дифференциальных уравнений (7.1) дает возможность 1) определить энергосиловые характеристики процесса листования (каландрования) полимерных систем с учетом изменения их свойств в зависимости от температуры, установить закономер-ности, связываюш ие энергосиловые характеристики с тепловыми процессами при деформации 2) исследовать зависимость тепловых процессов в области деформации от технологических параметров процесса и свойств материала 3) создать метод расчета полей температур [c.151]

    Таким образом, для расчета величин распорного усилия между валками 5 и 5, расхода энергии, поля температур и производительности каландра в прессовочной области деформации при обрезинивании корда и металлокорда должны быть известны следующие величины 1) реологические константы и п 2) скорость каландрования и 3) минимальный зазор / о, который выбирается с учетом [c.159]


    При определении распорных усилий и мощности привода все параметры (диаметры валков, углы захвата, углы опережения, реологические константы и др.) принимаются определенными для каждой конкретной области деформации. При необходимости более точного расчета процесса каландрования и прогнозирования температуры смеси расчет технологических и энергосиловых характеристик необходимо производить по блок-схеме (рис. 7.5). По этой схеме величины распорного усилия между валками и технологическая мощность привода каландра находятся после определения поля температур. [c.160]

    Процессы каландрования основаны на реологических свойствах резиновых смесей смеси приобретают заданные форму и размеры в результате механических воздействий — деформаций сжатия, растяжения, сдвига и кручения при определенных температурных режимах. При этом повышается пластичность смесей и снижается их вязкость, вплоть до перехода смеси в вязкотекучее состояние. При каландровании оформление смеси происходит в зазорах между валками каландра. Температурные режимы процесса устанавливают в зависимости от свойств исходных каучуков, состава резиновой смеси и ее склонности к подвулканизации. Скорость процессов регулируют в соответствии с особенностями проводимой операции, свойствами резиновой смеси, размерами и конфигурацией получаемого полуфабриката. [c.29]

    Из-за различия структуры и длины молекул у разных видов каучуков и резиновых смесей пластическая деформация при одних и тех же условиях имеет разные значения. В процессе переработки (пластикации, каландрования, экструзии и т. д.), поскольку при этом обычно происходит частичный разрыв макромолекул и, следовательно, облегчается их взаимное перемещение, для одного и того же каучука (резиновой смеси) значение г меняется. [c.69]

    ЛИЙ (шины, РТИ, резиновая обувь, предметы санитарной гигиены и др.) и несмотря на специфику их производства, существуют общие для всех отраслей резиновой промышленности вопросы систематизации, теоретического описания и совершенствования на научной основе процессов изготовления и профилирования (шприцевание, каландрование) резиновых смесей. Эти процессы подготовительного производства целесообразно описывать с точки зрения единой реологической основы, выделяя характерные особенности переработки эластомеров — большие вязкоупругие деформации и течение. [c.7]

    Деформация чистого сдвига может быть практически реализована при растяжении широкой полосы резины (при некоторых реологических испытаниях), а также при каландровании, если лист смеси, проходя через зазор, занимает всю ширину валка [23, 24]. Необходимо отметить, что отличие чистого сдвига от простого делается несущественным при очень больших сдвиговых деформациях у, реализуемых при течении каучуков и резиновых смесей ( у Х=10 —10 ). [c.13]

Рис. 6.10. Схема распределения скоростей и деформаций при каландровании Рис. 6.10. <a href="/info/140031">Схема распределения</a> скоростей и деформаций при каландровании
    Итак, при каландровании упруговязкого материала компоненты деформации материала в зазоре есть по существу компоненты чистого сдвига. При этом имеют место следующие реологические уравнения  [c.231]

    Стальные ленты покрывают пленкой ПВФ с помощью активированных клеев каландрованием при 200°С. Наслоение пленки на пластмассовые материалы можно также проводить методом каландрования. Благодаря высокой стойкости к истиранию в сочетании с высоким удлинением пленка выдерживает неоднократно расщирение и сжатие при деформации строительных материалов. [c.79]

    В процессах переработки при каландровании (шприцевании), прессовании или литье под давлением под действием приложенных напряжений, высокоэластических и пластических деформаций полимеры подвержены течению. [c.195]

    Меньшая усадка характеризует более технологичные смеси. Это свойство смесей является важным для процессов шприцевания и каландрования. Усадка связана с эластическими свойствами каучуков и резиновых смесей и зависит от величины обратимой деформации, накопленной материалом к моменту прекращения обработки. Усадка обычно уменьшается при увеличении до определенного предела содержания сажи в каучуке. Введение мягчителя, как правило, приводит к увеличению усадки смесей. [c.98]

    У разных видов каучуков (а следовательно, и резиновых смесей) пластическая деформация при одних и тех же условиях имеет, естественно, разные значения из-за различия структуры и длины макромолекул. Для одного и того же каучука или резиновой смеси величина Вц меняется в процессе переработки (пластикация, каландрование, шприцевание и т. д.), так как при этом обычно происходит частичный ра - [c.50]


    Прочность резин определяется величинами энергий связей между элементами структурной сетки. Реальная прочность резин всегда меньше теоретической, рассчитанной по энергиям связей, поскольку даже в резине высокого качества имеются микродефекты, возникающие из-за неравномерности пространственной структуры (перенапряжения наиболее коротких отрезков макромолекул между мастиками при деформации), механических включений, воздушных пузырей, тепловых и механических воздействий в процессе производства изделий и т. д. Очаг разрушения, который постепенно разрастается и приводит к полному разрушению материала, появляется в участках, имеющих дефекты, за счет перенапряжения при воздействии внешнего напряжения. У образцов большего размера прочность ниже и показатели сравнивают только на образцах стандартной формы и размеров, тщательно изготовленных. Для получения сравнимых результатов образцы изготавливают в строго определенном направлении по каландрованию, поскольку ориентация макромолекул повышает прочность резин. [c.106]

    С большими изменениями структуры полимеров приходится встречаться в процессах развития вынужденных эластических деформаций кристаллических и стеклообразных полимеров, при деформациях, близких к разрывной деформации, а также при различных механических обработках полимеров. Примерами хорошо известного влияния больших деформаций на структуру полимера является каландровый эффект, т. е. возникновение анизотропии свойств у каландрованного полимера, или получение ориентированных высокопрочных искусственных и синтетических волокон. Эти изменения структуры под действием внешних сил имеют весьма своеобразный характер в случае полимеров. [c.122]

    Изложенная в предыдущей главе гидродинамическая теория каландрования может использоваться для описания процесса деформации при вальцевании. [c.465]

    Причину каландрового эффекта следует искать в особом характере эластических деформаций каучукоподобных материалов. При каландровании происходит деформация трех видов 1) истинно упругая, почти мгновенная, не зависящая от температуры и отвечающая выпрямлению цепей полимера 2) высокоэластическая, зависящая от времени и температуры и отвечающая выпрямлению элементов цепи полимера 3) необратимая, пластическая, зависящая от времени и температуры, соответствующая скольжению цепей полимера относительно друг друга. [c.79]

    Переработка полимеров связана с изменением их физического состояния в результате нагревания или, наоборот, охлаждения. В производстве пленок процессы формования происходят зачастую в переходных областях в области температуры стеклования — ориентация пленок, основанная на явлении вынужденной эластичности в области температуры текучести — каландрование поливинилхлорида и получение полых изделий из жестких пленок методами вакуумного и пневматического формования, при которых основную роль играют пластические деформации полимера. В этих областях в наибольшей степени проявляются релаксационные процессы, зависящие от температурно-временного режима переработки и свойств перерабатываемого полимера. [c.49]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    Чангом проведено также экспериментальное исследование распорных усилий при каландровании ацетилцеллюлозы. Так же, как Уайт и Токита, он убедился в значимости критериев Вайссенберга и Деборы. Анализируя экспериментальные данные, полученные при исследовании каландрования ацетилцеллюлозы, он установил, что появление неравномерного распределения ориентационных деформаций, называемое при каландровании нервом , определяется критическими значениями критериев Деборы и Вайссенберга. [c.592]

    Различают полотняные, саржевые и атласные (сатиновые) ткани. Полотняные ткани характеризуются высокой задерживающей способностью, равномерным распределением пор, большой прочностью, незначит. деформацией при растяжении. Саржевые ткани обадают большей проницаемостью и грязеемкостью, но меньшей прочностью, чем полотняные ткани, и хорошей задерживающей способносгью. Сатиновые ткани по последним двум показателям уступают саржевым. Восюование и каландрование повышают задерживающую способность и соотв. ухудшают или улучшают условия сьема осадка. [c.97]

    Одним из первых классов ингредиентов, использованных для приготовления рези-новьк смесей были асфальты и битумы, которые вводили в натуральный каучук. В настоящее время нефтяные мягчители используют в основном для бутадиен-сти-рольных синтетических каучуков. В резиновые смеси вводят 30-35 масс. ч. мягчи-телей на 100 масс. ч. каучука. Компоненты битумов сравнительно инертны по отношению к вулканизации, но они улучшают распределение ингредиентов — серы и ускорителей и не замедляют вулканизацию. Нефтяные мягчители облегчают каландро-вание и шприцевание, улучшают поверхность каландрованной резиновой смеси. Наиболее известным нефтяным мягчителем является рубракс. Нефтяные мягчители облегчают обработку каучуков, снижают продолжительность и температуру смешения. Вулканизаты становятся более мягкими, эластичными, уменьшаются гистерезисные потери, но прочность снижается. Повышается морозостойкость, сопротивление утомлению, износостойкость, усталостная выносливость резин при многократных деформациях. Повышается производительность смесительного оборудования на 40-50 %, снижается расход энергии на изготовление резиновых смесей на 20-30 %. Состав нефтяных мягчителей влияет на пластифицирующее действие. В наибольшей степени улучшает морозостойкость резин алканы и циклоалканы, но они плохо совмещаются с полярными полимерами, замедляют вулканизацию каучуков и склонны к выпотеванию. Ароматизированные нефтяные пластификаторы хорошо совмещаются с каучуками, улучшают их обрабатываемость, повышают адгезию и [c.134]

    Вывод уравнений для определения распорного усилия при прохождении резиновой смеси между валками каландра аналогичен подобному выводу для вальцев. Приведенные в гл. 5 данные расчета скоростей движения и давления резиновой смеси в области деформации для вальцев могут быть применены для поверочного расчета процесса каландрования и расчетов каландров, хотя каландрование отличается от вальцевания главным образом тем, что резиновая смесь в первом случае через зазор проходит только один раз. Методика расчета мощности привода каландра в основном аналогична методике расчета мощности привода вальцев (гл. 5). [c.160]

    Тепловой режим работы каландра несколько иной, чем у вальцев. Здесь вследствие однократного прохождения материала через область деформации массовая производительность велика и количество теплоты, уносимой смесью, также велико. Тепловыделение за счет работы деформации резиновой смеси на каландре тоже велико. Температура поверхности валков и смеси на каландре выше, чем на вальцах, что приводит к повышенной теплоотдаче в окружающую среду. В отличие от вальцевания, каландрование требует более тщательного внимания к изменению температуры листовых заготовок и температуры валков, так как в тонких листах может быстрее произойти нежелательный их перегрев. [c.164]

    Процессы пластикации каучуков, приготовления резиновых смесей, их каландрования, экструзии и формования основаны на пластических и вязкотекучих свойствах каучуков, обеспечивающих определенную легкость их обработки. От эластических свойств каучуков и резиновых смесей зависит устойчивость формы невулканизованных полуфабрикатов при хранении. На-людавшаяся при проведении ряда технологических процессов усадка заготовок и изделий по форме и размерам объясняется эластическим восстановлением каучуков после прекращения их деформации. Кроме того, пластоэластические свойства каучуков (резиновых смесей) влияют на физико-механические показатели готовых изделий. [c.64]

    При каландровании требуется выпускать листы резиновой смеси с возможно более гладкой поверхностью и однородной толщиной по длине и ширине. Ширину и толщину (калибр) таких лцстов необходимо при этом регулировать с высокой степенью точности (до 1—2%) [2—4]. Предполагается, что смесь уже достаточно гомогенизирована и разогрета. В связи с этим в листовальном каландре скорости калибрующих валков практически одинаковы (фрикция отсутствует), поверхности валков полированы, имеются специальные устройства, обеспечивающие компенсацию деформации и прогиба валков под нагрузкой. [c.221]

    Для описания процесса каландрования используем положения, изложенные в работах [10, 13], где каландрование (деформирование в третьем калибрующем зазоре между валками при отсутствии значительного запаса материала перед этим зазором) рассматривается как процесс последовательного обжатия участков слоя материала, непрерывно движущегося через зону деформации, или как качение жесткого вала по >пруговязкому основанию. [c.230]

    Рассмотрение каландрования с учетом вязкоупругих свойств резиновых смесей является с одной стороны обобщением и развитием гидродинамического метода, а с другой — строится на использовании методов контактных задач теории упругости, теории качения и теоретических основ динамических испытаний резины. Приведенное в работе [5] обобщенное выражение для распорного усилия при каландровании, учитывающее гидростатическую Р и де-виаторную Хуу части нормальных напряжений, может быть использовано для инженерных расчетов. Гидростатическое сжатие, возникающее в результате отклонения реального поведения материала от однородной деформации, может быть учтено введением фактора формы. Формфактор может также учесть и такие сложные явления, как эффект конечных деформаций. Иногда этот учет делают введением дополнительного коэффициента нелинейности в реологическом уравнении для эластичного материала. [c.236]

    Наряду с повышенной прочностью и способностью эластомеров к большим обратимым деформациям, тер-моэласто пласты способны при нагревании течь, что дает возможность перерабатывать их в изделия не только методами, характерными для эластоме1ров (вальцеванием, каландрован ием), но и методами, обычными для термопластов литьем под давлением, экструзией, шприцеванием. [c.178]

    Поскольку скорость каландрованного листа обычно равна окружной скорости валков или несколько превышает ее, продольные деформации, возникающие при каландровании вследствие наличия нормальных напряжений, не успевают релаксировать и оказываются зафиксированными в готовом изделии. Существование продольной ориентации приводит к формированию в каландрованных изделиях волокнообразных фибриллярных структур, ориентированных в направлении каландрования. [c.388]

    Шприцевание и каландрование, особенности которых будут рассмотрены ниже, относятся к процессам профилирования резиновых смесей. Общим для них является направленное механическое воздействие на резиновую смесь, приводящее к ее деформированию и течению. При этом сформировавшиеся при смешении тиксотропные техуглерод-каучуковые структуры еще сохраняются при малых деформациях смеси и требуют для разруитения приложения аномально высоких напряжений сдвига, обусловливая возникновение пиковых нагрузок и дополнительные затраты мощности (рис. 3.1.). Дальнейшее доформирование сопровождается спадом напряжения сдвига т и переходом системы к стационарному режиму течения. Все процессы формования проводят в условиях стационарного течения для получения заготовок заданного профиля. Однако при хранении заготовок тиксотропная структура восстанавливается, что в сочетании с чисто эластическим восстановлением формы обусловливает специфические свойства сформованных резиновых смесей и их вулканизатов. [c.71]

    В соответствии с формулами (2.8) и (2.9) полная деформация смеси при механической обработке складывается из упругой, высокоэластической и пластической составляющих. Упругая (гуковская) часть деформации мгновенно восстанавливается после снятия нагрузок и не оказывает влияния на свойства заготовок. Пластическая составляющая обеспечивает течение И формование смеси. Высокоэластическая деформация косит релаксационный характер, присуща всем методам формования резиновых смесей, но, как следует из рис. 3.1, имеет особую важность в процессах каландрования, протекающих в области нестационарного режима деформирования смесей ( жЮ) После снятия внешних сил ориентированные макромолекулы ст ремятся вернуться в равновесное состояние под влиянием хаотического теплового движения молекулярных звеньев и молекулы каучука частично переходят к своей обычной клубкообразной форме. При этом наблюдается усадка, проявляющаяся в уменьшении ширины, длины и увеличении толщины заготовки без изменения ее объема. В соответствии с общими закономерностями релаксации наибольшая усадка происходит в первые минуты после формования и в основном заканчивается в момент выравнивания температуры смеси и окружающего воздуха. Величина усадки определяется каучуковой составляющей смеси она тем выше, чем большее количество каучука указано в рецепте. Каучуки и. смеси на их основе по склонности к усадке при шприцевании могут быть расположены в следующий ряд- НК + БСК> СКД>НК> БСК> СКИ--3> БК- Усадка снижается при применении в рецепте высокоструктурных и малоактивных видов технического углерода, при ведении процесса на повышенных температурах и увеличении времени формуюш,его воздействия на резиновую смесь. [c.71]

    Наполнители. Вулканизаты ненаполненных смесей из Б.-н. к. имеют низкую прочность при растяжении. В качестве усиливающих наполнителей применяют гл. обр. сажи, к-рые улучшают не только прочностные свойства, но также водостойкость и бензо- и мас-лостойкость вулканизатов, Б случае применения активной печной сажи типа SAF получают вулканизаты с наибольшими модулем, прочностью и износостойкостью. Для улучшения технологич. свойств смесей и получения вулканизатов с высоким модулем и низкой остаточной деформацией сжатия применяют активную печную сажу типа HAF. Вулканизаты смесей, содержащих газовую канальную сажу (типа ЕРС, ДГ-100) или ее комбинацию с полуактивной термич. сажей, характеризуются наименьшим водопоглощением. Смеси, наполненные сажей типа FEF, имеют наименьшую усадку при шприцевании и каландровании. Обычные количества сажи в резиновых смесях (мае. ч.) газовой канальной и активных печных 10—50 полуактивных (типа SRF, GPF, термической) 30—100. [c.155]

    Проходя через зазор между валками, каландруемый материал подвергается интенсивной деформации сдвига. При этом вследствие развития значительной высокоэластич. деформации в каландруемом материале возникают высокие нормальные напряжения, ориентированные в направлении его движения. Поскольку скорость приема каландрованного листа обычно равна окружной скорости валков (или превышает ее), возникающие вследствие нормальных напряжений продольные деформации не успевают релаксировать и фиксируются в изделии. Продольная ориентация обусловливает заметную анизотропию свойств изделия (т. наз. к а-ландровый эффект). При К. композиций, состоящих из полимера и анизотропного наполнителя, частицы к-рого пмеют пластинчатое или игольчатое строение (напр., тальк, магнезия, асбест), эти частицы ориентируются в направлении К.Мерой каландрового эффекта принято считать различие в значениях прочностных характеристик листа (прочности и относительного удлинения при разрыве), определенных в направлении К. и перпевдикулярно к нему. Ориентацию каландрованных листов можно ликвидировать, вы-держивая их в свободном состоянии в течение нескольких ч при 50—60 °С. Каландровый эффект можно уменьшить применением высоких темп-р К., а также закаткой каландрованного листа без натяжения. [c.461]

    При прохождении резиновой смеси через зазор между валками каландра возникают сложные виды деформаций — растяжения, сжатия, сдвига,— от которых зависят усадка, пластические свойства и структурные характеристики смеси. Протекающие при обработке резиновых смесей реологические и механохимические процессы зависят от величины зазора между валками. Установлено, что в процессе каландрования резиновой смеси при увеличении зазора между валками каландра с 0,2 до 2 мм давление снижается с 50 до 10 кгс1см , а распорные усилия уменьшаются . Наиболь- [c.163]


Смотреть страницы где упоминается термин Деформация при каландровании: [c.592]    [c.284]    [c.47]    [c.229]    [c.409]    [c.158]    [c.464]   
Переработка каучуков и резиновых смесей (1980) -- [ c.13 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Каландрование



© 2024 chem21.info Реклама на сайте