Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическое окисление этилен

    Пример 10. Составить материальный баланс производства оксида зтилена прямым каталитическим окислением этилена воздухом. Состав исходной газовой смеси [7о (об.)] этилен — 3, воздух — 97. Степень окисления этилена 0,5. Расчет вести на 1 т оксида этилена. [c.12]

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Тогда как каталитическое окисление этилена в окись этилена на серебряном катализаторе идет с участием хемосорбированного кислорода, атакуемого этиленом, каталитическое окисление других олефинов, в частности пропилена в акролеин и бутилена в бутадиен, протекает по иному механизму. Наиболее подходящим катализатором является молибдат висмута при температуре порядка 450°. [c.146]

    Каталитическое окисление этилена в этиленоксид проводят при 280 °С и 1,6 МПа в реакторе, производительность которого равна 700 кг этиленоксида в час. Число труб, заполненных катализатором, 3055 внутренний диаметр трубы 24 мм. На окисление поступают воздух и этилен в мольном соотношении 24 1 в этих условиях суммарная степень конверсии этилена в этиленоксид составляет 27,2 %. Определить линейную скорость газо-воздушной смеси в сечении трубного пространства реактора. [c.126]

    На установке, собранной на основе хроматографа Цвет-1 , проведен полный анализ смеси, содержащей продукты каталитического окисления этилена кислород, азот,, углекислый газ, этилен, окись этилена. Поскольку на одной колонке невозможно разделить сразу все компоненты, анализ проводился на двухступенчатой установке с одним детектором по теплопроводности. Кислород и азот, не разделенные в газожидкостной колонне, направлялись во вторую колонну с молекулярными ситами 5А. Двухступенчатые хроматографические установки, описанные в литературе сложны и состоят из большого числа (до 10) различных кранов и вентилей. В нашей установке к стандартной схеме хроматографа Цвет-1 добавлены лишь четырехходовой кран, вентиль тонкой регулировки и пенный измеритель. [c.85]

    Основным сырьем для получения окиси этилена является этилен. Каталитическое окисление этилена кислородом ведется при давлении 20—25 ати и температуре 215— 285° С. Выделение окиси этилена из контактных газов осуществляется абсорбцией 5%-ным водным раствором моноэтиленгликоля. Гидратация окиси этилена водой до образования моноэтиленгликоля происходит при температуре 120—165°С и при повышенном давлении. При этом образуется смесь моно-, ди-, три- и высших гликолей. [c.170]

    Среди эпоксидных соединений в промышленности исключительное значение имеют этилен- и пропиленоксид. Объем производства этих продуктов постоянно возрастает, так как увеличивается потребность в полиэфирах, полиуретанах, полиэпоксидах, антифризах, хладоагентах, поверхностно-активных веществах и др. Основной метод получения эпоксидов — прямое каталитическое окисление этилена и пропилена воздухом или кислородом. [c.125]


    Прямое каталитическое окисление этилена. При пропускании смеси воздуха с этиленом (нижний предел взрываемости этиленовоздушной смеси — 3,4% СаН ) на серебряном катализаторе при 250—280 °С образуется оксид этилена [c.13]

    Разрабатывавшиеся в Германии методы каталитического окисления этилена отличались от приведенных выше некоторыми деталями [121. Так, например, предполагали подвергать окислению 4—5-процентную этилен-воз-душную смесь, применяя в качестве катализатора чистое серебро, нанесенное на пемзу, и проводить процесс при 200—240° С и атмосферном давлении с продолжительностью контакта 3—5 сек. Вычисленное значение для выхода окиси этилена равно 50%, считая на пропущенный этилен вычисленный состав газа, выходящего из реактора, следующий 2—2,2% окиси этилена, 4—6% двуокиси углерода и 0,8—0,9% этилена. По проекту, окись этилена адсорбируется активированным углем, а часть выходящих из адсорбера газов, содержащих еще некоторое количество этилена, возвращается на окисление [131. [c.145]

    На рис. 43 показана одна из схем производства окиси этилена каталитическим окислением этилена. Очищенные от примесей воздух и этилен смешиваются с рециркулирующим газом и поступают в основной реактор 1 (реактор первой ступени). Выходящие горячие газы, пройдя теплообменник 5,нагревают рециркулирующие газы, сжимаются компрессором 8 и поступают в основной абсорбер 2 (абсорбер первой ступени), в котором окись этилена и образующиеся в качестве побочных продуктов незначительные количества ацетальдегида и часть двуокиси углерода поглощаются водой. После абсорбера 2 большая часть газов возвращается в цикл на смешение со свежим этиленом и воздухом, а остальные газы после нагревания в теплообменнике смешиваются с добавочным количеством воздуха и поступают в дополнительный реактор 3 (реактор второй ступени). Добавочное количество воздуха вводится для более полного окисления этилена в реакторе 3. Отвод образующегося тепла из обоих реактаров Производится циркулирующим теплоносителем, который, в свою очередь, отдает тепло кипящей воде. Таким образом, теплота реакции используется для получения водяного пара. [c.227]

    Изотопно-кинетический метод применялся при исследовании каталитических реакций. Промышленное значение имеет процесс каталитического окисления этилена на серебре. Продуктами реакции являются технически важная окись этилена и углекислый газ. Предстояло выяснить, происходит ли образование СОа в результате доокисления окиси этилена или независимым путем, в качестве побочного направления процесса окисления этилена. В реакционную смесь вводили меченый этилен и немеченую окись этилена. Удельная активность образующегося СОг оказалась во много раз выше активности окиси этилена. Следовательно, основная масса [c.235]

    Существенным недостатком процесса получения окиси этилена через этиленхлоргидрин является большой расход хлора и извести, а также значительные капитальные затраты. Этих недостатков в значительной мере лишен процесс прямого каталитического окисления этилена в окись этилена. При этом методе расходуются только этилен и воздух, не требуются затраты хлора и извести, не образуется побочный продукт — дихлорэтан, меньше капитальные затраты. Поэтому метод прямого окисления приобретает все большее распространение [138, 139]. [c.157]

    Из этих рассуждений следует, что в опытах по хемосорбции или по кислородному обмену поверхностный заряженный слой является доминирующим фактором. Однако присутствие молекулы углеводорода существенно меняет эту картину. Было показано, что ксилол отдает поверхности электрон, образуя положительный хемосорбированный ион, причем как ксилол, так и этилен могут создавать в твердом теле дефекты путем потребления кислорода в реакциях их каталитического окисления. В этих условиях поверхностный заряженный слой изменяется коренным образом, и концентрация дефектов становится зависимой от природы адсорбированного углеводорода и от степени протекания реакции, которая происходит скорее, чем в случае зависимости только от концентрации кислорода. Тогда, если (2) остается стадией, определяющей скорость каталитической реакции, зависимость от концентрации кислорода должна выражаться просто множителем Po Такое соотношение было обна- [c.246]

    Этилен, получаемый при крекинге нефти, подвергают каталитическому окислению кислородом воздуха до окиси этилена. Гидратируя последнюю, получают этиленгликоль  [c.316]

    Каталитическое окисление этилена на серебряном катализаторе служит примером реакции, при которой кислород непосредственно присоединяется к ненасыщенному углеводороду. Марголис [30] показала, что, хотя при температурах около 200° на чистой поверхности серебра этилен почти не адсорбируется, на серебряной поверхности, предварительно адсорбировавшей кислород, адсорбция этого углеводорода происходит быстро. Результаты калориметрических исследований Стоуна [1, 31] подтвердили, что кислород, предварительно адсорбированный на новерхности закиси кобальта, увеличивает адсорбцию этилена. Последовательный напуск порций этилена на обезгаженную и обработанную кислородом поверхность закиси кобальта показал, что теплота сорбции этилена снижается от 80 до 18 ккал-молъ по мере постепенного увеличения степени заполнения кислородом поверхности катализатора. Наблюдения за изменением теплот адсорбции выявили три характерные стадии парциального окисления этилена а) образование окиси этилена, б) образование ацетальдегида и в) образование формальдегида. Теплоты адсорбции, соответствующие образованию этих веществ в адсорбированном состоянии, соответственно равны 15, 40 и 100ккал-моль . Таким образом, на начальных стадиях взаимодействия этилена с предварительно адсорбированным кислородом одна молекула этилена, по-видимому, реагирует с двумя атомами адсорбированного кислорода в результате этой реакции образуется формальдегид. На более поздних стадиях одна молекула этилена взаимодействует с одним атомом адсорбированного кислорода, при этом образуются окись этилена и ацетальдегид. Эти результаты в значительной степени согласуются с более ранними выводами Твига [32, 33], который исследовал кинетику окисления этилена на серебряном катализа- [c.325]


    Несмотря па все это, промышленность пе потеряла интереса к получению акрилонитрила из этилена, поскольку в большинстве случаев этилен все еще дешевле ацетилена, а производство окиси этилепа каталитическим окислением этилена не требует хлора. [c.422]

    Очевидно, из всех имеющихся статей следует выбрать те, которые дают более полное представление о каталитическом окислении этилена сюда относятся работы Мак-Би, Хасса и Уайзмена [124]. Эти исследователи проводили окисление на окиси алюминия, покрытой 21 % окиси серебра, к которой в качестве промотора было добавлено 2% перекиси бария. Окись алюминия была главным образом в виде корунда, т. е. в виде высокотемпературной формы окиси алюминия. Эти исследователи в своих работах изменяли температуру, соотношение воздух — этилен и. время контакта. [c.260]

    Окись этилена получают в промышленности либо обработкой этилен-хлоргидри1га растворами щелочей (чаш,е всего известковым молоком), либо каталитическим окисленном этилена 1108]. [c.394]

    Терилен—продукт конденсации терефталевой кислоты с этиленом или тетраметиленгликолем. Терефталевую кислоту получают каталитическим окислением п-ксилола или через хлорметилирова-ние толуола. Технология получения терилена примерно такая же, как для найлона или капрона. [c.507]

    Прямое окисление этилена в окйсь этилена в присутствии серебряного катализатора в экономическом отношении больших преимуществ перед хло ргидринны м методом не имеет. Однако каталитическое окисление находит широкое развитие благодаря тому, что оно исключает расход дорогостоящего и дефицитного хлора. При хлоргидринном методе на 1 кг окиси этилена расходуется 0,9 кг этилена, 2,2 кг хлора и 2 кг гидрата окиси кальция. С учетом пбразования побочных продуктов — 0,20—0,22 кг дихлорэтана и немного 3, р -дихлорэтилового эфира, расход хлора на 1 кг окиси этилена составляет 1,8 кг, а этилена 0,7 кг. При каталитическом окислении расходный коэффициент этилена на окись этилена составляет около 1,3 кг кг. Если этилен был бы дороже хлора примерно в 6 раз, то затраты на сырье в этих двух процессах были бы одинаковы. Однако, так как хлор дефицитен и дорог, затраты на сырье при прямом окислении значительно меньше. Но вместе с тем, процесс каталитического окисления требует применения дорогого катализатора, аппаратурное оформление его несколько сложнее, а энергетических затрат значительно больше, чем по хлоргидринному способу. [c.117]

    Гетерогенно-каталитическое окисление молекулярным кислородом органических соединений в газовой фазе широко используется в промышленности. Этим методом окисляют метанол в формальдегид, этилен в этиленоксид, пропилен в акролеин и акриловую кислоту, бензол и нафталин соответственно в малеиновый и 4л<алевый ангидриды. Бензолполикарбоновые кислоты и их ангидриды также получают газофазным окислением на катализаторах. [c.846]

    Если окисление алканов трудно остановить на стадии эбразования альдегидов, то этилен удается успешно окис-дить каталитически до уксусного альдегида, и этот метод се более широко применяется в промышленности Механизм каталитического окисления этилена до уксусного альдегида следующий [c.619]

    Вопрос о роли альдегидов в каталитическом окислении представляет большой интерес. Альдегиды принято считать первичными продуктами окисления, из которых образуется большинство других продуктов. При изучении окисления этилена на серебре было установлено, что стабильные кислородсодерл ащие продукты (формальдегид, ацетальдегид) не могут быть главными промежуточными продуктами глубокого окисления этилена до углекислого газа. Пометив ацетальдегид или этилен радиоактивным изотспом С , можно получить количественную характеристику соотношения скоростей различных реакций во время окисления. [c.73]

    Туигг в своей первой статье по каталитическому окислению этилена показал, что при температуре 200—350° С кислород хемисорбируется в. виде атомов, а этилен не адсорбируется. Туигг определил часть поверхности серебра, покрытой кислородом, путем измерений электропроводности. Таким образом, он мог вычислять количество кислорода, адсорбированного на поверхности серебра. Адсорбция и десорбция кислорода в работе Туигга были медленными, поэтому он имел возможность проводить реакции различных газов с адсорбированными слоями кислорода иа серебре. [c.262]

    Опубликована схема [191] каталитического окисления этилена в окись этилена с участием радикалов (рис. 37). Этилен образует с кислородом перекисный бирадикал (7), который изомеризуется (2, 6, 7) с образованием окиси этилена 2, 9, Ю), диметилено во го эфира (5) и кетена 11). Эти нестойкие соединения превращаются в углекислый газ и воду 14, 17), а окись этилена изомеризуется в ацетальдегид, из которого каким-то образом получается формальдегид, легко окисляющийся в СО 2 и Н2О 4 , 5). [c.87]

    Со >Ni Mп>Na),. установленный дая цеолитов при окислении этилена. Более подробное изучение окисления этилена кислородом в присутствии цеолита Си(П) в импульсном реакторе показало [77], что на катализаторе, обработанном кислородом при 450° С, можно проводить окисление этилена при 340° С даже в отсутствие кислорода и что количество лабильного кислорода в цеолите и каталитическая активность цеолита увеличиваются с ростом степени обмена. Таким образом, процессы каталитического окисления и хемосорбции кислорода взаимозависимы. При более низких температурах (150—250° С), когда окисления не происходит, бьша обнаружена яктивиппвянная адсорбция этилена на катализаторе, предварительно обработанном кислородом. Еще более прочно адсорбирует этилен катализатор, с поверхности которого предварительно удалили кислород. Объясняют это следующим на поверхности, свободной от кислорода, этилен взаимодействует с ионами меди (состояние меди не указывается), а на покрытой кислородом поверхности — с группировками, в состав которых входят ион меди и хемосорбированный кислород. Близкие результаты были получены и при окислении окиси углерода [77]. Поэтому можно отметить, что в целом выводы советских [77] и японских [72] исследователей согласуются. Правда, Кубо и сотр. [72] вводили в цеолиты однозарядные катионы меди, а Альтшуллер и сотр. [77] — двузарядные, поэтому не ясно, соответствует ли предложенный Кубо активный центр Си(П)0 — Си(П) подвижной активной форме кислорода, приведенной в работе Альтшуллера. Выяснение этого вопроса требует более детального знания окислительно-восстановительных свойств медных форм цеолитов. [c.146]

    Влияние небольших количеств этилена было несколько большим в случае прогретых при 160—165° образцах, чем в случае образцов, не подвергавшихся прогреву. Уже это говорит о том, что указанный эффект не может быть приписан влиянию этилена на золотой отсчетный электрод. О том же убедительно свидетельствуют данные, полученные с Аи-электродом и Ni-образцом, а также с Ni-электродом и Ag-об-разцом. Следовательно, увеличение к.р.п. в присутствии этилена объясняется уменьшением работы выхода серебра вследствие хемосорбции этилена, который при этом поляризуется положительно, смещая один или несколько своих электронов к серебру или хемосорбированному на нем кислороду. Поэтому при совместном присутствии Ог и С2Н4 отрицательный заряд на поверхности серебра значительно меньше, чем в присутствии только О2, или поверхность даже заряжается положительно. В литературе имеются данные (например, Трепнела [1]) об отсутствии хемосорбции этилена на обезгаженной поверхности серебра. В докладе Л. Я- Марголис (см. стр. 410) указывается, что на чистой поверхности серебра этилен заряжается отрицательно. Следовательно, при совместном присутствии кислорода и этилена хемосорбция протекает иначе, чем при наличии в газовой фазе одного этилена. Это обстоятельство следует учитывать, в частности, при построении механизма каталитического окисления этилена в окись этилена на серебре. [c.170]

    Шульце и Тиле [166] тоже нроводили окисление этилена на серебряном катализаторе. Они утверждают, что окисление этилена тормозится продуктами его окисления — главным образом водой. Авторы предполагают, что определяюш им фактором в окислении является температура поверхности катализатора, а не газового потока. Почти все исследователи, занимающиеся каталитическим окислением, рассматривали возможность различия между этими двумя температурами. Шульце в своей работе хотел подтвердить постулат Туигга о том, что адсорбированный атомный кислород определяет скорость реакции. Он попытался покрыть поверхность серебра атомным кислородом, используя КаО как источник кислорода. Однако полученные им результаты неубедительны. Тогда он попытался получить атомный кислород на поверхности таким образом, что сначала пропускал над катализатором кислород, затем азот, потом азот и этилен и, наконец, снова азот. Он надеялся, что прореагирует смесь этилена и азота с атомным кислородом, образованным на поверхности. [c.269]

    При каталитическом окислении бутана получают уксусную кислоту и малеиновый ангидрид (пока это практически единственные примеры промышленного использования предельных углеводородов в качестве сырья для прямого получения химических продуктов), а при его пиролизе — этилен и пропилен. При дегидрировании бутана получаются к-бутилены, применяемые в качестве промежуточного сырья для получения бутадиена, полиизопрена, метилакрилата, полиизобутиленов, бутилкаучу-ков и др. Бутадиен применяют в синтезе полибута-диенстирольного каучука, нитрильных, поли-г -бутадиеновых, хлоропреновьгх и других каучуков. [c.588]

    Чтобы процесс можно было вести при концентрациях, не превышающих нижнего предела взрываемости этилено-воздушных смесей, вводят незначительное количество этилена (не более 3%) и большой избыток воздуха. Это важно для всех процессов каталитического окисления. Степень конверсии составляет лишь 40—45%, поэтому при однократном пропускании газа через катализатор достигается настолько незначительная концентрация окиси этилена, что ее нецелесообразно выделять. Вследствие этого процесс ведут в несколько ступеней, т. е. пропускают газ через реактор несколько раз, добавляя этилен. В конечном итоге концентрация окиси этилена достигает 7—8% при более высоких концентрациях процесс неэкономичен. [c.220]

    Малеиновая кислота НООС СН — СН - СООН (цис-этилен- , 3-дикарбоновая кислота) имеет т. и, 135° при 160° начинает кипеть, превращаясь в малеиновый ангидрид (т. п. 53° т. к. 202°). Кислота растворима в воде, нерастворима в бензоле. Получают ее каталитическим окислением (чаще с У 05) бензола, фурфурола, дифенила, кротонового альдегида и т. п., бутилена, бутанола, бутадиена, бутиленгликоля и т. д.Для превращения ее в ангидрид предложены различные способы дающие чистый продукт с хорошим выходом. [c.497]

    Нами разработаны методики газохроматографического анализа продуктов каталитического окисления изопропилбен--зола и этилбензола в соответствующие гидроперекиси, продуктов дегидроциклизации н-гептана, жидких продуктов процесса окисления этилена в ацетальдегид и методика определения микропримеси ацетилена в этилене, используемом для получения полиэтилена. [c.41]

    ЧТО колебания зависят от содержания тяжелого металла. Эффективность следов марганца (не менее 1/1000 эквивалента) зависит от того, добавляют ли растворимую соль марганца или нерастворимую окись марганца. Кроме того, каталитическое окисление может происходить в достаточно концентрированных растворах в течение 15 мин. при надлежащем контроле pH. Наконец, тяжелые металлы играют роль в превращении этилен-бас-дитиокарбаматов в изотиоцианаты [2, 11]. Людвиг и Торн [42] установили, что активность этилентиураммоносульфида против Monilinia fru ti oia повыщается в 4—8 раз при добавлении небольших количеств (10 мг) гидроокиси цинка. Они доказали также образование изотиоцианатов из моносульфидов в невод- [c.160]

    Каталитическое окисление этилена в окись этилена представляет в настоящее время интерес в том отношении, что вследствие дефгщита хлора широкое развитие хлоргидринного метода затруднено. При производстве окиси этилена из этиленхлоргидрина на каледый килограмм товарной окиси расходуется около 2 кг хлора, 0,9 кг этилена и 2 кг гидроокиси кальция. Поскольку в процессе получают одновременно 0,20—0,22 кг дихлорэтана и немного р,р -дихлордиэтилового эфира, то с учетом расхода части хлора на эти побочные продукты оказывается, что расходные коэффициенты на самом деле составляют по хлору 1,8 кг кг, а по этилену 0,74 кг кг. В современном методе каталитического окисления этилена потребность в олефине равна 1,04 кг на 1 кг окиси, что дает перерасход в 0,3 кг кг по сравнению с хлоргидрипным способом. Следовательно, чтобы сэкономить 0,3 кг этилена, нужно израсходовать 2 кг хлора и 2 кг гидроокиси кальция или по 6 кг этих продуктов, если расчет вести на 1 кг сэкономленного этилена. Таким образом, с точки зрения стоимости сырья хлоргидриновый процесс был бы равноценен каталитическому окислению, если бы стоимость этилепа превышала по меньшей мере в 6 раз стоимость хлора. На самом деле этого пе может быть, тахс как хлор дефицитен и дорог. [c.398]

    Сайентифик Дизайн Компани сооружает установки, в которых окислителем служит воздух. Указывается, что выход по этилену равен 55—57% это соответствует расходу 1,1 кг этилена на 1 кг окиси. Принимают, что затраты на сырье составляют 75% затрат на сырье в хлоргидриновом процессе. Поскольку реакторы для каталитического окисления значительно сложнее, стоимость оборудования будет дороже. Достаточно падежных сведений о конструктивных деталях и о составе катализатора в настоящее время пока не опубликовано. Величина экснлуатацпопных расходов приближается к таковой хлоргидринового нроцесса. Окись этилена, полученная каталитическим окислением, более чиста, чем производимая из этиленхлоргидрина. Единственным побочным продуктом является ацетальдегид, который почти полностью окисляется в углекислоту, следовательно, продукты реакции состоят исключительно из окиси этилена, углекислоты и воды. [c.398]

    Для сравнения свойств контактов в таких условиях (10 объемн. % СдНв -Ь 90 объемн. % О2) была исследована каталитическая активность 17 окислов металлов [7]. Основными продуктами каталитического окисления пропилена являлись СО2 и Н2О. Продукты неполного окисления состояли преимущественно из ацетальдегида и акролеина. На ряде окислов были обнаружены продукты крекинга пропилена этилен, водород, метан. В табл. 2 окислы приведены в порядке уменьшения общей скорости окисления пропилена при 300 С. По активности они различаются между собой на пять порядков. В таком же порядке располагаются окислы при сравнении их [c.262]


Смотреть страницы где упоминается термин Каталитическое окисление этилен: [c.398]    [c.398]    [c.457]    [c.318]    [c.224]    [c.277]    [c.163]   
Окись этилена (1967) -- [ c.207 , c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитическое окислени

Окисление этилена



© 2025 chem21.info Реклама на сайте