Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеризация термодинамически

    Важно отметить, что с увеличением давления при той же температуре резко снижаются глубина превращения циклогексана и выход бензола на превращенный циклогексан, выход же метилциклопентана возрастает. Объясняется это тем, что реакция дегидрирования циклогексана протекает со значительно большей скоростью, чем изомеризации. Повышение давления ограничивает термодинамически возможный выход бензола, и общее превращение в этом случае определяется скоростью изомеризации. Термодинамически возможный выход ароматических углеводородов из алкилпроизводных циклогексена несколько выше, чем из циклогексана. Более подробно это показано в табл. 18 и в следующих данных о риформинге циклогексана на катализаторе, содержащем платину на кислотном носителе [72]  [c.130]


    Детонационная стойкость образующихся нафтеновых углеводородов Сб несколько ниже, так как низкие температуры изомеризации термодинамически благоприятствуют образованию сравнительно низкооктанового циклогексана. [c.165]

    Изомеризация парафиновых углеводородов— равновесная реакция [9]. Равновесные относительные количества отдельных изомеров при изомеризации н-бутана, н-пентана и н-гексана были рассчитаны по термодинамическим данным и определены экспериментально [Ю]. [c.514]

    Сходство химического состава сырых нефтей может привести к гипотезе, что углеводороды сырой нефти, достигшие равновесия в определенных условиях температуры и давления их образования, более или менее одинаковы для всех сырых нефтей. Вообще говоря, эта гипотеза несовместима с термодинамическими свойствами углеводородов. Известно, что все углеводороды сырых нефтей термически нестабильны и могут быть превращены в такие стабильные системы, как, например, метан или этан и углерод. Такие реакции, однако, характеризуются высокими значениями энергии активации и поэтому невозможны при тех низкотемпературных условиях, которые соответствуют образованию и залеганию сырой нефти. Реакции изомеризации протекают значительно легче, в частности в присутствии некоторых гетерогенных катализаторов, таких, как алюмосиликатные системы, обычно имеющиеся в нефтяных пластах. Следовательно, равновесие между изомерами таких углеводородов более вероятно, чем равновесие, рассмотренное выше. [c.23]

    Может показаться случайным неодинаковое различие в поведении соответствующих изомерных углеводородов с геминальными атомами углерода в рядах пентана и гексана, а именно неопентана и неогексана. Эти углеводороды аналогичны друг другу в том отношении, что каждый из них является для своей группы наиболее термодинамически выгодным изомером при низких температурах. Различие же между ними заключается в том, что неогексан участвует в изомеризации, катализируемой галоид-алюминием, а неопентан нет. Главные стадии обратимого ионного цепного механизма, включающие равновесие между неогексаном и 2,3-ди-метилбутаном, показаны уравнением (29). Здесь К+ обозначает или катион, полученный из одного из участвующих изомеров, или инициатор цепи, полученный из двух других источников  [c.32]

    ТЕРМОДИНАМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РЕАКЦИИ ИЗОМЕРИЗАЦИИ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.12]

    Они протекают практически без изменения объема, поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию изопарафиновых углеводородов. Тепловой эффект реакции изомеризации невелик — от 2 до 20 КДж/моль — и мало меняется с изменением температуры. Исследованию равновесий реакций изомеризации парафиновых углеводородов посвящено значительное число работ экспериментального и расчетного характера, например [13-16]. Материал по сравнению расчетных и экспериментальных данных представлен в [11,17]. Наблюдаемое для некоторых углеводородов несовпадение объясняется недостаточно точным вычислением термодинамических величин. При расчете равновесных составов по значениям констант равновесия необходимо также учитывать, что на практике при протекании реакции изомеризации не всегда образуются все теоретически возможные изомеры например, в продуктах изомеризации пентана были обнаружены только два изомера — н-пентан и изопентан (2-метилбутан) неопентан (2,2-диметилпропан) не был обнаружен. Последнее вызвано неустойчивостью первичного карбкатиона — необходимой стадии перегруппировки вторичного карбкатиона. Ввиду отсутствия неопентана равновесие должно рассматриваться только между н-пентаном и изопен-таном. То же самое относится к изомерам гептана при проведении изомеризации отсутствуют 2,2-диметилпентан, 3,3-диметилпентан, 3-этил-пентан, что связано с затруднениями кинетического характера. [c.13]


    Кинетика и механизм реакции изомеризации зависят от типа катализатора и условий проведения реакции. В условиях гетерогенного катализа реакция изомеризации парафинов протекает по термодинамически контролируемому механизму [11]. Количественной оценкой кинетических параметров реакционной способности углеводородов является константа скорости превращения углеводорода в изомерный углеводород или смесь изомеров. Изучение путей этих превращений и состава промежуточных продуктов связано с изучением механизма реакции. [c.14]

    В процессе изомеризации на платиновых катализаторах эти углеводороды подвергаются превращениям в соответствии с условиями термодинамического равновесия для каждого углеводорода по нижеследующим [c.31]

    Не только термодинамическая устойчивость парафиновых углеводородов определяется их строением, в частности расположением метиль-ных групп. Длина углеводородной цепи и степень ее разветвления, положение метильных групп во многом определяют физические свойства парафинового углеводорода, в том числе температуру кристаллизации. Наличие в керосиновых, дизельных и других фракциях значительных количеств линейных парафиновых углеводородов обуславливает их высокую температуру кристаллизации. Наглядным примером служит зависимость температуры кристаллизации парафиновых углеводородов Сю— i6. имеющих различную структуру (рис. 4.3). Обращает на себя внимание общая закономерность, обнаруженная авторами работы [130], - ступенчатый рост температуры кристаллизации парафиновых углеводородов различных гомологических рядов. При перемещении метильной группы внутрь углеводородной цепи температура кристаллизации понижается, хотя это изменение носит неравномерный характер (рис. 4.4). Высококипящие парафиновые углеводороды в процессе гидроизомеризации претерпевают наиболее существенные превращения в продукты гидрокрекинга и изомеризации, и это обеспечивает значительное снижение температуры кристаллизации перерабатываемых фракций. [c.113]

    В табл. 4.5 приведены показатели превращения парафиновых углеводородов l2—С]6 в присутствии различных катализаторов [128]. Анализ данных таблицы показывает, что из всех исследованных катализаторов наиболее активным и селективным оказался платиновый катализатор на основе цеолита aY. Реакция изомеризации осуществлялась на нем при значительно более низких (285 С) температурах, что в соответствии с термодинамическими закономерностями способствует образованию разветвленных углеводородов и более селективному протеканию процесса. [c.114]

    Реакция, катализированная галоидами металлов, обратима и является реакцией первого порядка. Состав продуктов реакции ограничивается термодинамическим равновесием процентное содержание парафинов с возрастанием температуры уменьшается. Безводный хлористый алюминий наиболее эффективно применяется для изомеризации н-бутана в изобутап. Этот катализатор, так же как и бромистый алюминий и фтористый бор, необходимо активировать при помощи галоид-водорода или веществами, способными в условиях реакции давать до начала изомеризации галоид-водород [397—399]. К другим активирующим агентам относятся нагрев [400], вода [397], кислород [400, 401], олефины и алкил-галоиды. [c.116]

    Основные соображения. При переработке нефти происходят следующие реакции изомеризация, гидрирование, дегидрирование, полимеризация, крекинг, циклизация, ароматизация, обессеривание и т. д. В большей или меньшей степени все эти реакции термодинамически возможны для углеводородных систем. Однако благодаря селективному действию катализатора и подбору условий процесса — давления, температуры — многие из этих реакций подавляются (скорость реакций становится незначительной), несмотря на то, что они могут быть термодинамически чрезвычайно благоприятными. Так, нанример, гидрокрекинг парафинов проводят только при высоких температурах, несмотря на то, что и при комнатных температурах происходящие при этом реакции характеризуются сильно отрицательными стандартными свободными энергиями. [c.374]

    Данные термодинамических расчетов изомеризации и-бутана [c.380]

    Термодинамически — процесс изомеризации низкотемпературный, причем низкие температуры способствуют образованию более разветвленных и соответственно более высокооктановых изомеров. Однако для увеличения скорости превращения изомеризацию ведут при относительно высокой температуре 380—400°С. Используют катализаторы, содержащие платину, палладий, нанесенные на оксид алюминия или цеолит. Промышленный отечественный катализатор ИП-62 содержит около 0,5% на оксиде алюминия активация катализатора проводится фтором. Позднее были разработаны и другие, более эффективные, катализаторы — НИП-66 (алюмоплатиновый, 0,6% Р1, промотированный хлором), ИЦК-2 (0,8% Рс1 на цеолите СаУ) [20]. В присутствии катализатора НИП-66 процесс проводят при низкой температуре (до> 130—140°С). Так, при 150°С, объемной скорости подачи н-пентана 1,5 и давлении 3 МПа в катализате получали около 65% изопентана. На промышленном катализаторе ИП-62 при 380— 450 °С выход изопентана за однократный пропуск сырья составил 50—55% для повышения выхода целевого продукта процесс проводят с рециркуляцией непревращенного н-пентана, в итоге выход изопентана достигает 96—98% (на н-пентан), т. е. близко к теоретическому. [c.76]


    В табл. 16 приведены константы равновесия и равновесные степени превращения для некоторых реакций, протекающих при термокаталитических процессах производства моторных топлив. Как видно из таблицы, крекинг, гидрокрекинг и гидрогенолиз протекают в широком интервале температур как практически необратимые до полного израсходования исходного вещества. Что касается изомеризации нормальных парафинов в изопарафины, то для этой реакции термодинамические ограничения значительны. [c.125]

    Рассмотрим теперь данные по равновесным смесям изомеризации нафтенов. Ограничившись наиболее важной реакцией сужения—расширения цикла, не будем рассматривать изомеризацию, связанную с миграцией или изменением числа алкильных заместителей при сохранении структуры цикла. Для перехода от циклогексановых к циклопентановым углеводородам термодинамически благоприятны высокие температуры, и в этом существенное отличие изомеризации нафтенов от изомеризации парафинов. Если структурно переход от нормального к изопарафину подобен переходу от шестичленного к пятичленному нафтену (в обоих случаях в углеродной цепп вместо вторичного появляется третичный атом углерода), то термодинамические характеристики этих процессов различны. Изомеризация парафинов протекает с небольшим выделением тепла, уменьшением энтропии с ростом температуры Кр этой реакции уменьшается. Структурно близкая изомеризация циклогексанов в циклопентаны протекает, наоборот, с поглощением [c.128]

    Насколько отличается значение, полученное методом энергий связей, от термодинамического значения г) Объясните теплоту изомеризации паров этанола на основе соображений о химической связи в молекулах этанола и диметилового эфира. [c.43]

    В отдельных разделах приводятся данные по термодинамическим характеристикам олефинов, термодинамике и кинетике их изомеризации. [c.2]

    Нужно оговорить, что в этой книге использованы равноценные термины олефины и алкены , так как первый термин традиционно применяется и удобен при описании химических и технологических процессов, а второй — при обобщении термодинамических и кинетических расчетов. Рассматриваемые в книге закономерности справедливы для различных соединений с двойной связью, однако основное внимание уделено изомеризации алициклических олефинов, имеющих наибольшее техническое значение. Это позволило рассмотреть различные типы изомеризации в книге относительно небольшого объема. [c.6]

    ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ОЛЕФИНОВ И ТЕРМОДИНАМИКА РЕАКЦИИ ИХ ИЗОМЕРИЗАЦИИ [c.7]

    Создание таблиц термодинамических параметров алкенов усложняется большим числом их изомеров, различающихся местом двойной связи, углеродным скелетом и его пространственным расположением. Например, если для бутенов возможно существование всего 4 изомеров, то для пентенов их 6, для гексенов 20, для гептенов 48 и т. д. В справочной литературе приводятся термодинамические параметры для ограниченного числа изомеров алкенов с 6 и более углеродными атомами. Это, естественно, затрудняет термодинамические расчеты изомеризации алкенов. [c.7]

    Соотношение скоростей типа (8,2) было найдено Ингольдом с сотрудниками [429] в случае ненасыщенных нитрилов ( ) и (е) с помощью исследования их изотопного обмена. Эта система представляет собой пример изомеризации термодинамически неустойчивой формы (с)) в устойчивую форму (е). Исследование показало, что нитрил А-цикло-гексенилуксусной кислоты (д) обменивает водород на дейтерий тяжелого спирта при катализе этилатом натрия быстрее, чем происходит его изомеризация в нитрил циклогексилиденуксусной кислоты е) [c.482]

    Влияние температуры проиллюстрировано на примере этенолиза 2-метилпентена-2 (табл. 37) с повышением температуры равновесная степень превращения 2-метилпентена-2 уменьшается, что наиболее заметно при С2Н4 СеН12= 1 1. Таким образом, этенолиз гексенов термодинамически выгоднее проводить при невысоких температурах. Однако при подборе оптимальной температуры решающим является не термодинамический, а кинетический аспект. В частности, необходимо исключать возможность быстрой изомеризации термодинамически нестабильных гексенов в усло- [c.125]

    Опираясь на вычисленные отношения термодинамического равновесия для различных гексеновых изомеров в области от 300 до 1000 К (рис. 50), Баас и сотрудники показали, что для достижения максимальной конверсии 2-метилпентена-1 в 2-метилпентен-2 в каждый проход следует поддерживать как можно более низкую температуру. Исследования Эммета (105] подтвердили, что подобную изомеризацию легко осуществить в мягких условиях со слабокислыми катализаторами [10] и что сдвиг двойных связей при этом проходит очень селективно. Эти результаты подтверждаются и другими авторами. Описан метод, по которому можно изомеризовать 2-метилпентеп-1 прп комнатной температуре с 50% раствором серной кислоты, получив при этом равновесную смесь 2-метилпентена-1 и 2-метилпентена-2 [107]. [c.228]

    Реакции изомеризации парафинов являются обратимыми, протекают без изменения объема, с небольшим экзотермическим эффектом (6 — 8 кДж/моль). Поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию более разветвленных изомеров и получению, суедовательно, изомеризата с более высокими октановыми числами ( абл. 10.11). При этом равновесное содержание изомеров при данной температуре повышается с увеличением числа атомов угле — рода в молекуле н —парафина. [c.198]

    Впервые конфигурационная изомеризация была описана в 1932 г. на примере стереоизомерных 1,2- и 1,4-ди-метилциклогексанов Н. Д. Зелинским и Е. И. Марголис [2]. Они обнаружили, что 1(цс-формы указанных углеводородов под действием Ы1-катализатора переходят в соответствующие гранс-формы. Последующие исследования показали, что в результате указанных превращений образуются не индивидуальные стереоизомеры, а их смеси, состав которых в большей или меньшей мере приближается к составу термодинамически равновесных смесей. [c.64]

    И. В. Калечиц с сотр. [9] изучали конфигурационную изомеризацию 1,3-диалкилциклопентанов. Превращение г ис-1,3-диметилциклопентана в транс-форму над железо-платиновым катализатором протекает до концентраций, близких к равновесным обратное превращение проходит относительно неглубоко. В работах Ал. А. Петрова с сотр. [10] реакция конфигурационной изомеризации стереоизомерных ди- и полиалкилциклопента-нов была использована для установления термодинамического равновесия между ними и для вычисления значений ряда термодинамических функций. [c.69]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]

    В случае более сложных циклических углеводородов конфигурационную изомеризацию широко использовали для определения некоторых термодинамических функций. Особенно важными являются здесь работы Аллинджера и сотр. [63—69] в США и Ал. А. Петрова [70—72] в СССР. В частности, были исследованы стереоизомерные [c.82]

    При температурах крекинга полимеризация значительно ограничена термодинамически. Тем не менее, может иметь место ассоциация олефинов с последующим повторным крекингом, что приводит к диснропорциониро-ванию и одновременной изомеризации олефинов. Можно указать на полимеризацию бутена-1 при температурах между 200 и 300° С [41]. [c.135]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    Рассчитанный термодинамический равновесный состав для парафинов Се следующий 2,2-диметилбутана 19%, 2,3-диметилбутана 9%, 2-ме-тилпентана 28%, 3-метилпентана 18%, н-гексана 26%. Очевидно в некоторой степени шла изомеризация первичных продуктов расщепления в ди-метилбутаны, но равновесные значения не были достигнуты. [c.256]

    Изомеризация при низких температурах имеет большие преимущества с точки зрения термодинамического равновесия, которое в этом случае более благоприятно для образования изопарафинов, в том числе вы-сокоразветвленных изомеров, обладающих высокими антидетонацион-ными характеристиками. Во всех процессах глубина превращения парафиновых углеводородов лимитируется равновесием, однако разделение, возврат непревращенной части исходного сырья и высокая селективность процесса изомеризации позволяет получить глубину превращения исходного углеводорода, близкую к 100%. В зависимости от количества рецикла изменяются показатели и технико-экономическая характеристика процесса увеличение рецикла приводит к удорожанию процесса, обеспечивая при этом более высокие октановые числа изомеризата. С этой точки зрения наиболее эффективными являются процессы изомеризации, осуществляемые при низкой температуре, обеспечивающей максимальную глубину превращения за проход . [c.4]

    Изомеризация парафиновых углеводородов на хлориде алюминия освещена в работах [1—4]. 1 Хлорид алюминия, обеспечивая термодинамически благоприятные условия протекания реакции, позволяет осуществлять ее при 50—150 °С. Эта температура способствует образованию продуктов, обогащенных разветвленными изомерами. Однако наряду с бесспорными достоинствами зтот катализатор обладал рядом отрицательных особенностей, усложняющих технологию процесса и зксплуатацию промышленных установок. Тем не менее во время второй мировой войны в связи с потребностью в алкилате для приготовления высокооктанового авиационного бензина процессы изомеризации на хлориде алюминия получили развитие, в основном для изомеризации н-бутана в изобутан. Первая промышленная установка была введена фирмой Shell в 1941 г. К концу второй мировой войны в США были разработаны пять процессов изомеризации, которые отличались либо методом введения хлорида алюминия в зону реакции, либо носителем для катализатора, либо его физическим состоянием. [c.5]

    В соответствии с термодинамическими особенностями реакции изомеризации парафиновых углеводородов глубдаа изомеризации н-парафи-нов и октановое число изомеризата ограничены определенной величиной, которая является функцией от температуры (рис. 3.1 и 3.2). [c.82]

    Расчет термодинамического равновесия реакции изомеризации низших парафиновых углеводородов С4-С8 не представляет значительных трудностей и был выполнен уже более 30 лет назад [14, с. 274-347]. Для парафиновых углеводородов Сд и выше такой расчет становится весьма трудоемким, что объясняется экспоненциальным ростом числа возможных изомеров с увеличением числа атомов углерода в молекуле. Например, у декана их 75, а у эйкозана уже 366319. Необходимо учтывать и то обстоятельство, что в реальных реакциях изомеризации парафиновых углеводородов практически не образуются все известные изомеры. Особенно затруднено образование сильно разветвленных изомеров. Более того, в работах Ал. А. Петрова [129] показано, что на реальных катализаторах возможен переход более разветвленных парафиновых углеводородов в менее разветвленные, например триметилпроизводных в диметилпроизводные. Цеолитсодержащие катализаторы накладывают наиболее существенные ограничения на структуру образующихся изомеров в связи со своеобразием их геометрии. В то же время известно, что сильно разветвленные изомеры высших парафиновых углеводородов в присутствии кислотных катализаторов подвергаются быстрому гидрокрекингу, в связи с чем в изомеризате не накапливаются. Таким образом, наряду с необходимостью внесения упрощений в методику расчета термодинамического равновесия изомеров высоко-кшящих парафиновых углеводородов существует потребность расчета группового состава изомеров. [c.111]

    На основе термодинамических характеристик парафиновых углеводородов [14, с. 274-347] были рассчитаны [11] составы равновесных смесей при изомеризации парафиновых углеводородов g- i (табл. 4.2). Характерная для парафиновых углеводородов тенденция к уменьшению с ростом температуры доли углеводородов изостроения в равновесной смеси и к возрастанию доли линейных изомеров сохраняется и для ВЫСОКОКИПЯЩИХ парафиновых углеводородов. Согласно выполненным расчетам, при увеличении числа изомеров доля линейных парафиновых углевопооодов падает с 0,37 до 0,11 при 500 К (табл. 4.3). [c.111]

    В присутствии ультрастабильного цеолита Y, содержащего 0,5% Pt, при температуре 80-240 °С, давлении водорода 0,5-1,0 МПа была изучена изомеризация нюктана и 2,4,4-триметилпентана [133]. Селективность реакции зависела определяющим образом от конверсии парафинового углеводорода. При конверсии н-октана меньшей 15% селективность была близка к 100%, а при более глубоком превращении н-октана она падала. На цеолите Y максимальная конверсия н-октана составляла 46%. Изомеры с двумя заместителями образуются в последовательных реакциях из моноразветвленных изомеров. Сопоставление результатов эксперимента с данными термодинамического равновесия показывает, что содержание линейного октана в реальном продукте всегда выше равновесного, а содержание диметилзамещенных изомеров всегда меньше 1%. Это с очевидностью доказывает, что достижению термодинамического равновесия препятствует распад диметилзамещенных изомеров. Среди моноразветвленных изомеров преобладают метилзамещенные. Изомеры с этильны-ми и пропильными боковыми цепями практически не образуются. Соотношение монометилпроизводных октана близко к равновесному и не зависит от температуры и парциального давления реагентов, а определя- [c.116]

    Термодинамические закономерности реакцш изомеризации ограничивают глубину превращения данного парафинового углеводорода в зависимости от температуры процесса при однократном пропуске сырья над катализатором. Чем ниже температура процесса, тем большая глубина изомеризации достигается за проход . Для полного превращения исходного сырья процесс следует осуществлять по схеме с рециркуляцией непревращенного углеводорода. [c.130]

    Так, например, на основании снектросконических данных Питце ) [20] произвел расчет термодинамических величин (в том числе и свободной энергии) для ряда парафиновых и непредельных углеводородов. В 1941 г. опубликована статья Россини и Питцера [21], в которой с помощью наиболее точных в то время данных о свободных энергиях углеводородов вычислены константы равновесия реакций изомеризации бутанов, пентанов. гексанов и гептапов в интервале 25—727° С и соответ- [c.300]

    Пентаны. С увеличением молекулярного веса увеличивается легкость изомеризации парафинов, но вместе с тем увеличивается и размер реакции перераспределения. Можно создать условия, при которых будет проходить изомеризация только бутана (селективная изомеризация), но для нентанов и более высоких углеводородов создать такие условия трудно. При 27° С над А1Вгз равновесная смень и-пентанов и изопентанов содержит 70 и более процентов изомеров с разветвленными цепочками при 0° С — около 90% [423]. В побочных реакциях даже при 0° С образуются также и более высоко- или низкокипящие углеводороды (гексаны, гентаны и изобутап). С увеличением температуры количество побочных реакций увеличивается [423, 397]. Несмотря на то, что термодинамические условия благоприятны, неопентан не показывает и признака изомеризации даже после 1000 часов обработки при комнатной температуре нет нигде сообщений о его присутствии в продуктах какой-либо изомеризации пептана. н-Пентан изомеризуется нри более мягких условиях, чем н-бутан. Изомеризация низкооктанового легкого сырья каталитического риформинга, содержащего к-нентан и гексаны, на практике осуществляется нри помощи хлористого алюминия [431]. [c.118]

    Способность алюмосиликатных комплексов вызывать ноли меризацию надежно доказана для температур от 150 до 350° i Еще до начала применения каталитического крекинга Гэйер получил полипропилены в присутствии алюмосиликатного катализатора при 340° С и при атмосферном давлении [237]. Бутены могут полимеризоваться при температуре выше 210° С, но при давлении 7 ати эта реакция происходит уже при 175° С [257, 268]. При температурах каталитического крекинга термодинамические факторы являются неблагоприятными для полимеризации полимеры, по-видимому, подвергаются изомеризации и насыщению.. [c.333]

    С наибольшими превращениями изомеризация нормальных парафинов протекает при низких температурах с ростом температуры возрастает содержание непревращенного сырья в термодинамически равновесной смеси. Добавим, что, как показывают термодинамические расчеты, возможное образование различных изопарафинов идет в преимущественном направлении метил-, но не этилзамещенных. Из метилзамещенных при низких температурах в больших количествах могут образовываться диметилпроизводные, но уже при 500 К и выше начинают преобладать монометилпроиз-водные. Обычно немного диметилзамещенных в продуктах изомеризации нормальных парафинов образуется из-за чисто кинетических затруднений. Важным обстоятельством, которое следует учитывать при термодинамических расчетах изомеризации, является возможность образования именно различных изопарафинов по параллельным реакциям. Термодинамический расчет сложных реакций изомеризации рассмотрен в работе [И]. Здесь следует лишь отметить, что его целесообразно проводить не для всех возможных реакций изомеризации, а только для тех, которые протекают в реальном процессе. Если, например, при изомеризации н-пентана образуется только 2-метилбутан, то бессмысленным яв- [c.125]


Смотреть страницы где упоминается термин Изомеризация термодинамически: [c.516]    [c.55]    [c.64]    [c.41]    [c.108]    [c.99]   
Органический синтез. Наука и искусство (2001) -- [ c.0 ]

Органический синтез (2001) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесная изомеризация как метод определения термодинамической устойчивости структурных изомеров

Термодинамические параметры изомеризации

Термодинамические свойства олефинов и термодинамика реакций их изомеризации



© 2025 chem21.info Реклама на сайте