Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация связь с поляризациями растворителя и растворенного вещества

    Для простоты растворители можно в общем виде подразделить на растворители с сильными и со слабыми межмолекулярными взаимодействиями. К первому типу относится важнейший из растворителей — вода, и межмолекулярные силы, действующие в ней, включают всепроникающие силы Ван-дер-Ваальса, диполярное притяжение, зависящее от постоянной поляризации связи О — Н, и, самое важное, водородные связи, связывающие отдельные молекулы в агрегаты. Ко второму типу относится, например, бензол или гексан. В данном случае силами сцепления являются в основном силы Ван-дер-Ваальса. Если вещество нужно растворить в воде, то энергия, выделяющаяся при растворении, должна быть достаточной для того, чтобы преодолеть сильные силы сцепления между молекулами воды, а также силы сцепления между молекулами растворенного вещества. С другой стороны, относительно слабые межмолекулярные силы в бензоле или гексане легко могут быть преодолены, какой бы ни была энергия, необходимая для разделения самих частиц растворенного вещества. [c.127]


    Связь между поляризацией раствора П и поляризациями растворителя П[ и растворенного вещества Пг выражается уравнением [c.37]

    Жидкие растворы-очень удобная среда для протекания химических реакций. Благодаря быстрому смешиванию жидкостей предполагаемые реагенты часто сближаются друг с другом, поэтому столкновения их молекул и, следовательно, химические реакции могут осушествляться гораздо быстрее, чем это происходит в кристаллическом состоянии. С другой стороны, данное число молекул в жидкости помещается в меньшем объеме, чем то же число молекул в газе, поэтому реагирующие между собой молекулы в жидкости имеют больше шансов вступить друг с другом в контакт. Вода-особенно подходящий растворитель для проведения химических реакций, поскольку ее молекулы полярны. Молекулы Н2О, а также ионы Н и ОН , на которые вода диссоциирована в небольшой степени, могут способствовать поляризации связей в других молекулах, ослаблять связи между атомами и инициировать химические реакции. Не случайно зарождение жизни на Земле произошло в океанах, а не в верхних слоях атмосферы или на суше. Если бы жизнь была вынуждена развиваться посредством реакций между веществами в кристаллическом (твердом) состоянии, 4,5 миллиарда лет прошедшей до сего времени истории Земли едва хватило бы на то, чтобы этот процесс мог начаться. [c.76]

    Поляризация раствора связана с поляризацией растворителя, поляризацией растворенного вещества и молярными концентрациями компонентов следующим соотношением  [c.182]

    Связь между поляризацией раствора Р и поляризациями растворителя Р и растворенного вещества выражается уравнением [c.41]

    Связь между дипольными моментами и диэлектрическими проницаемостями была рассмотрена в гл. 5 (стр. 144—145). Полная молярная поляризация соединения является суммой постоянного члена — деформационной поляризации Рд и члена, зависящего от температуры — ориентационной поляризации Рд. Определение диэлектрической проницаемости (и отсюда Р /) для ряда температур дает возможность найти зависящую от температуры часть Р(з, которая включает дипольный момент. Этот метод используется как для газов, так и для разбавленных растворов в неполярных растворителях и обычно дает точные результаты, если только вещество устойчиво в достаточно большом интервале температур. [c.367]


    В растворах полярных соединений, помимо рассмотренных вьппе факторов, на химический сдвиг протонов растворенного вещества может оказывать влияние электростатическое поле, создаваемое за счет поляризации молекулами растворимого вещества ближайших молекул растворителя. Та компонента внешнего электростатического поля, которая направлена вдоль связи X—Н, стремится сместить пару электронов, образующих связь, в направлении от Н к X, так что электронная плотность и связанное с ней магнитное экранирование протона уменьшаются. В результате полярный эффект приводит к смещению сигнала полярного соединения в низкое поле. [c.90]

    Связь между поляризацией раствора Р и поляризациями растворителя Р) и растворенного вещества Рг выражается теоретически обоснованным уравнением  [c.257]

    Следует отметить, что кроме воды известно огромное число самых различных растворителей. И так же, как при образовании водных растворов, центральную роль играют процессы сольватации—взаимодействие молекул растворителя с растворяемым объектом. Значение процессов гидратации при электролитической диссоциации в водных растворах отмечалось впервые в работах И. А. Каблукова (1891) и В. А. Кистяковского (1888—1890), положивших начало развитию теории электролитов, один из важнейших вопросов которой является изучение структуры растворов и характера распределения в них ионов. Установлено, что не только молекулы воды влияют на структуру раствора (поляризация, ионизация), но и растворяемое вещество в свою очередь влияет на структуру воды (растворителя). Как заряженные частицы, ионы обладают электрическим полем, напряжен юсть которого достигает величин порядка 10 В/см. Это поле определяет сильное электростатическое взаимодействие между ионом и полярными молекулами воды. Молекулы воды, находящиеся в непосредственной близости к иону, могут связываться с ним силами химической связи, образуя химическое соединение. Непосредственно присоединенные к иону молекулы воды строго ориентированы, их расположение напоминает структуру кристалла. Следовательно, при растворении электролита структура воды становится неоднородной. Часть молекул воды, которая далека от иона, остается в прежнем состоянии, это собственная структура воды HjO ,, другая часть—псевдокристаллическая структура, характерная для ионной зоны Н О , . В переходном слое между этими зонами вода имеет промежуточную [c.109]

    Электролитическая ионизация вызывается взаимодействием полярных молекул растворителя с частицами растворяемого вещества. Это взаимодействие приводит к поляризации даже преимущественно ковалентных связей, как, например, в хлороводороде. При растворении этого газа в воде происходит образование ионов водорода и хлора за счет ослабления связи Н С1 в среде с большой диэлектрической постоянной. Переход ионов в раствор сопровождается их гидрата-, цией  [c.152]

    При использовании в качестве связующего насыщенного раствора гидрата в приповерхностном слое свойство растворителя резко изменяется, так как структурированный приповерхностный слой воды имеет повышенную плотность и пониженную диэлектрическую проницаемость. Таким образом, в приповерхностном слое будет происходить кристаллизация растворенного вещества. Причем условия поляризации молекул воды под влиянием поля соприкасающихся поверхностей будут приводить к упорядочению структуры новообразований, на что обратили внимание Ефремов и Розенталь, указывая на важную роль структурирования клеящей прослойки. [c.111]

    При этом /Сж=(НзО+][ОН-]=1,02-10- г-ион л при 25°. В этом случае ион водорода в водном растворе существует в виде иона оксония Н3О+, существование которого можно обосновать следующим образом малый по размеру протон должен обладать большой поляризующей способностью и как следствие притягивать отрицательно заряженный конец диполя молекулы воды сильнее, чем любой другой катион. Эта поляризация достаточна для формирования ковалентной (координационной) связи между протоном и молекулой воды с образованием Н3О+. Аналогично ион МН/ образуется в растворе жидкого аммиака, ион СНзСООН —в растворе ледяной уксусной кислоты и т. д. Очевидно, способность протонных растворителей взаимодействовать с протоном необходимо учитывать в первую очередь при решении вопроса, будет или не будет протекать ионизация растворенного вещества. [c.324]

    Разделение каких-либо производных аминокислот методом газо-жидкостной хроматографии при заданных условиях зависит как от различия в их точках кипения, так и от отклонения их растворов в стационарном растворителе от идеальных. В случае неполярных жидких фаз, подобных высокополимерному углеводороду типа апиезона или силиконовых масел, которые не вызывают поляризации анализируемых соединений, последние разделяются главным образом в соответствии с их точками кипения. Поэтому такие соединения, как структурные изомеры лейцина и изолейцина, близкие по температурам кипения, отделяются друг от друга с трудом. С другой стороны, разделение компонентов на полярной жидкой фазе определяется не только давлением их паров, но и специфическим взаимодействием молекул растворителя и разделяемых веществ. С этой точки зрения применение полярных стационарных жидких фаз является более перспективным, так как должно одновременно обеспечивать высокую селективность разделения летучих производных аминокислот различных классов наряду с высокой эффективностью разделения группы аминокислот, принадлежащих к одному гомологическому ряду. Кроме того, использование полярной фазы приводит к подавлению адсорбционных свойств твердого носителя и позволяет хроматографировать высококипящие производные аминокислот на колонках с низким содержанием стационарной жидкой фазы. Последнее связано со снижением температуры колонки и, следовательно, увеличением эффективности хроматографического разделения. [c.257]


    В связи с рядом трудностей изучения поляризации газов и паров широкое применение нашел так называемый второй метод Дебая, который состоит в использовании уравнения Дебая для разбавленных растворов полярных веществ в неполярных растворителях. В первом приближении обоснованием этого метода служит предположение об отсутствии значительных взаимодействий между растворителем (1) и растворенным веществом (2), что выражается в аддитивности свойств раствора. [c.72]

    При изучении сольватации методом ЯМР весьма желательно иметь возможность наблюдения отдельных резонансных линий от свободных молекул растворителя и от молекул, находящихся в первой координационной сфере иона. Связывая химический сдвиг веществ в растворах с явлением сольватации, необходимо учитывать все возможные вклады в величины сдвигов, отражающие взаимодействие ионов с растворителем. Суммарный химический сдвиг является следствием следующих процессов разрыв связей между молекулами растворителя поляризация среды, взаимодействие ион-растворитель в первой сольватной оболочке, а также неэлектростатическое взаимодействие растворителя с ионом. Таким образом, интерпретация получаемых результатов по химическим сдвигам весьма сложна. [c.194]

    Первой стадией процесса растворения вещества, состоящего из полярных молекул, является поляризация ковалентной связи растворителем, что, вообще говоря, приводит к гетеролити-ческому расщеплению на положительную и отрицательную частицы. Многочисленными примерами можно доказать, что способность растворителя расщеплять вещество на ионы в первую очередь определяется его донорным и акцепторным числами, а не диэлектрической проницаемостью ел Даже растворитель с большой диэлектрической проницаемостью не способен гете-ролитически расщепить связи растворенной частицы, если он не имеет достаточной координирующей способности. Так, например, хлорная кислота в серной кислоте (ег = 80) не образует ионов, в то время как в водном растворе (ег=78,5) О—Н-связь в молекуле НСЮ4 полностью разрывается. [c.450]

    Характер взаимодействия поверхностно-активных веществ (ПАВ) зависит от природы и концентрации ПАВ и растворителя, а также от потенциала поляризации. Особенно сильное воздействие оказывают вещества с я-элект ронной структурой. Свободная энергия адсорбции вещества на ртути AGнg зависит от энергии сольватации иона в объеме раствора и в поверхностном слое (их разность на незаряженной поверхности характеризует эффект выжимания частиц в плотную часть двойного слоя), от энергии связи молекул адсорбированного вещества, входящего в двойной слой, со ртутью АСнд-орг и от энергии связи со ртутью молекул растворителя АОна-НгО, вытесняющихся из двойного слоя - [c.20]

    Хкг-экв-. 4.1. X = — а. 4.2. Для растворов электролитов используется переменный высокочастотный ток. Это делается для того, чтобы избежать электролиза и возникающей в связи с этим противо-э. д. с. (э. д. с. поляризации). 4.3. Диссоциация происходит самопроизвольно в процессе растворения и вызывается влиянием растворителя как химическим (взаимодействие с растворенным веществом), так и физическим (растшритель как среда с определенными диэлектрическими свойствами ослабляет взаимодействие между [c.104]

    Наличие связи между асимметрией в строении молекул и I оптической активностью убедительно доказано тем, что в ведущие к нарушению этой асимметрии химические превращен) приводят к потере оптических свойств данного вещества. Врац] ние плоскости поляризации в чистых жидкостях или раствор изменяется в зависимости от длины световой волны и I температуры. В случае растворов оно зависит от природ растворителя и концентрации раствора. [c.356]

    По результатам измерения электрофизичес1сих характеристик остатков и битумов даже при температуре выше 250 °С в них сохраняются структурные образования. Диэлектрическая проницаемость нефтяных остатков и полученных из ешх битумов при повышении температуры увеличивается. Такое поведение обратно 1Ю-ведению обычных веществ, диэлектрическая проницаемость которых при повышении температуры уменьшается. Характер температурной зависимости диэлектрической проницаемости и тангенс угла диэлектрических потерь свидетельствует о преобладании в остатках и брпумах дипольно-релаксационной поляризации, характерной для молекул с постоянным дипольным моментом. При изменении температуры наблюдается экстремальное изменение диэлектрической проницаемости и тангенса угла диэлектрических потерь. Прохождение этих величин через экстремумы при изменении температуры связано с критическими фазовыми переходами (образованием новых фаз). Структурные образования сохраняются и при растворении нефтяных остатков даже в таком хорошем растворителе, как бензол. Исследования диэлектрических характеристик бензольных растворов компонентов нефтяных остатков и битумов показали, что между смолами и асфальтенами проявляются более сильные взаимодействия, чем между отдельными частицами только смол или асфальтенов. Мольная поляризация комплекса из смол и асфальтенов может периодически изменяться. Величина этих изменений определяется мольным соотношением между смолами и асфальтенами и является кратной 0,25 моля асфальтенов. Аналогичная картина наблюдается и при изменении концентрации асфальтенов в системе масла—смолы—асфальтены. [c.756]

    Био установил, что изученные вещества вращают плоскость поляризации света на определенный угол и что вторая призма Николя (первоначально расположенная перпендикулярно первой) должна быть повернута на такой же угол, чтобы снова получить затемненное поле. Так было открыто явление оптической активности. Некоторые вещества, проявляющие оптическую активность (оптически активные), обнаруживают ее только в твердом (кристаллическом) состоянии в этих случаях ясно, что вращение является свойством кристалла. В 1821 г. английский астроном Гершель показал, что оптическое вращение связано с диссимметрией кристалла (предмет диссиммет-ричен, если он не совмещается со своим зеркальным изображением — как левая и правая перчатки). Однако другие вещества проявляют оптическую активность не только в твердом, но и в жидком (в расплаве или в растворе) или газообразном состоянии. Для таких веществ вращение связано со структурой самих молекул. Био предложил следующее уравнение для оптического вращения (закон Био) а = [а][1й, где а — вращение в угловых градусах, / — длина пути (через вещество или раствор) и ё — плотность или концентрация. Согласно закону Био, вращение пропорционально числу молекул. (Это число также пропорционально длине пути через вещество и плотности или концентрации раствора.) Константа пропорциональности [а]1 зависит не только от природы вещества, но и от длины волны света, температуры и природы растворителя (растворитель и приблизительная концентрация указываются в скобках после формулы концентрация может влиять на [а], влияя на среду). [c.13]

    Ассоциация между растворенным веществом и растворителем. Существует целый ряд работ, в которых изменения диэлектрической постоянной, дипольного момента или молекулярной поляризации приписываются ассоциации между молекулами растворенного вещества или между молекулами растворенного вещества и молекулами растворителя. Такой метод был использован Глесстоном [777], который одним из первых выдвинул предположение об образовании Н-связи с участием водородного атома группы С — Н (в системе хлороформ — ацетон). Исследование поляризации и спектров КР позволило Томеко и Хатчеру [2026] определить длину цепей и степень ассоциации в смесях ацетона с жирными кислотами. Образование комплексов было установлено в растворах простых эфиров в воде [580], а также спиртов и галогенсодержащих соединений в бензоле [1690]. Фью и Смит, а такжеСмити Уолшоу[649, 648, 1902, 1901, 1904], исследуя амины (преимущественно ароматические), пришли к выводу, что мезомерия приводит к усилению Н-связи с диоксаном. Аналогичное увеличение дипольного [c.27]

    В работе (201] было сформулировано правило, согласно которому в идеальных растворах (следующих закону Рауля) диэлектрическая проницаемость Es является аддитивной величиной в растворах, характеризующихся положительными отклонениями от идеальности упругость насыщенного пара больше, чем вычисленная по закону Рауля), отклонения от аддитивности диэлектрической проницаемости Де отрицательны в растворах с отрицательными отклонениями от идеальности Ае >0. Послед- нее утверждение, как было отмечено Ю. Гурвицем и Е. Михальчи-ком [9], не всегда соответствует действительности. Отрицательные отклонения от идеальности связаны с тенденцией к химическому взаимодействию между растворителем и растворенным веществом. При этом вследствие поляризации молеКул, а также возникновения аятипарал-лельных или параллельных ориентаций диполей могут наблюдаться как положительные, так и отрицательные отклонения от аддитивности. Кроме того, в [201] Bs рассматривалась как функция мольных долей х, что не точно. Отклонения от аддитивности должны определяться по графикам ej=f(9)> где ф—-объемные доли. [c.124]

    Электронейтральная ковалентная связь не вызывает сильных электростатических сил, поэтому взаимодействие между отдельными молекулами незначительно. С другой стороны, поляризуемость гомеополярной связи ) относительно велика, и поэтому преобладают зависящие от поляризации межмолекулярные силы (силы Ван дер Ваальса — Лондона, силы дисперсии см. об этом в учебниках по физической химии). Органические вещества, в которых сцепление молекул осуществляется в общем за счет атомных связей, кристаллизуются в такие молекулярные решетки, энергия которых значительно меньше энергии ионных решеток. Поэтому точки плавления, кипения и сублимации у типично органических веществ значительно ниже, чем у типично неорганических соединений. Вследствие своей относительно высокой поляризуемости органические растворители вступают с молекулярными решетками в более сильное взаимодействие, чем, к примеру, сильно полярная, но слабо поляризуемая вода, поэтому органические вещества растворяются преимущественно органическими растворителями similia similibus solvuntur) ). У типично неорганических соединений, кристаллизующихся в ионных решетках, все происходит как раз наоборот. [c.118]

    Полярность продуктов присоединения кислот к основаниям доказана прямыми измерениями диэлектрических свойств их растворов. Такие измерения в тройных системах, состоящих из кислоты, основания и растворителя (в частности, бензола), выполнены несколькими авторами [14, 51, 52]. Я. К. Сыркин и Л. Собчик [53, 54] измерили диэлектрическую поляризацию Р более тридцати систем, состоящих из растворов стехиометрических количеств кислоты и основания в бензоле, и сравнивали с суммарной поляризацией двух компонентов. Разность А1ежду наблюденной и вычисленной величиной, равная ДР, характеризует силу взаимодействия между реагентами. Определены также дипольные моменты молекулярных соединений, образующихся в растворе. Разность между дипольным моментом молекулярного соединения и векторной суммой моментов связей веществ, его образующих, дает представление о полярности водородной связи. [c.272]


Смотреть страницы где упоминается термин Поляризация связь с поляризациями растворителя и растворенного вещества: [c.63]    [c.82]    [c.262]    [c.104]    [c.399]    [c.21]   
Практикум по физической химии изд3 (1964) -- [ c.41 ]

Практикум по физической химии Изд 3 (1964) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризация растворителя

Поляризация связей

связи растворителей



© 2025 chem21.info Реклама на сайте