Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэфиры влияние на свойства

    В литературе достаточно полно освещено влияние строения полиэфиров на свойства полиуретанов, однако практически отсутствуют данные о влиянии строения структурирующих агентов — низкомолекулярных полиолов. [c.105]

    Влияние строения сложных полиэфиров на свойства полиуретановых эластомеров  [c.342]

    Оксикарбоновая кислота (II) является мономером типа АВ и получается к виде смеси изомеров (6- и 7-изомеры). В то время как полиэфир, полученный из чистого изомера (не установлено какого — G- или 7-изомера), обладает т. пл. выше 300° и плавится с разложением, полиэфир из смеси изомеров (синтез которой приводится ниже) устойчив выше температуры его плавления (210 ). Это является еще одним примером влияния строения цепи на свойства в ряду сополимеров с хаотическим распределением звеньев в макромолекулах. [c.147]


    Проведенный теоретический анализ [25, 272] подтвердил, что величины /См существенно зависят от строения и способа введения исходных соединений в сферу реакции. Так, вычисленные на основе опытных данных значения полиэфиров при нанесении их на теоретическую кривую зависимости K от г (рис. 4.12) хорошо совпадают с величинами определенными из такой теоретической зависимости по экспериментально найденным значениям г несимметричных диолов. Тем самым, с одной стороны, подтверждаются правильность и общий характер сделанных выводов о влиянии условий проведения акцепторно-каталитической полиэтерификации на микроструктуру образующихся макромолекул. С другой стороны, доказывается возможность предсказания строения синтезируемых полимеров, исходя из экспериментально полученных значений г. Полученные результаты однозначно свидетельствуют о том, что в условиях неравновесной поликонденсации с участием несимметричных мономеров возможно целенаправленно синтезировать полимеры заданной микроструктуры, а следовательно, и с нужным комплексом ценных свойств. [c.62]

    Сведения об использовании фенолфталеина для получения полиэфиров, алкидных, эпоксидных, фенолформальдегидных и других полимеров начали появляться в патентах и публикациях начиная с 40-х годов [3, 5]. Характерным для них было то, что фенолфталеин применялся просто как один из диолов без учета его специфического влияния на свойства полимеров. Началом систематических целенаправленных работ по кардовым полимерам следует считать синтез высокомолекулярных полиарилатов фенолфталеина и различных дикарбоновых кислот, осуществленный в 1961 г., когда, по существу впервые, было обращено внимание на специфический вклад кардовой фталидной группировки в формирование комплекса свойств полимеров [6, 7]. [c.106]

    Что касается влияния структуры и природы экстрагентов на их экстракционные свойства по отношению к различным неорганическим веществам, то было установлено, что чем длиннее алкильный радикал, тем хуже экстракция металлов [176, 179, 183, 236, 238, 239]. Эта зависимость справедлива для эфиров, кетонов и спиртов, однако она не может быть распространена за пределы гомологического ряда. Так, например, в гомологическом ряду полиэфиров вида R O ( Ha)20R зависимость сохраняется, в то время как в рядах с различным числом СНа-групп между кислородными атомами отмечается лишь слабая связь экстракционной способности с соотношением углерод кислород в экстрагенте. [c.43]


    Была проведена серия опытов, в которых изменяли состав пороха. Установлено, что физико-химические свойства органического горючего в смесевой системе на основе перхлората аммония оказывают определенное влияние на скорость воспламенения поверхности поры. В качестве горючего использовали полистирол, полиметилметакрилат, битум, полиэфир. Своеобразно влияет металлическое горючее — алюминий. Алюминий применяли со сред- [c.121]

    Учесть количественно влияние этих реакций на строение и свойства полиэфиров не представляется возможным из-за отсутствия данных по значениям < p отдельных реакций [c.58]

    В отношении изменений механических свойств под действием облучения полиэтилентерефталат вполне устойчив при умеренных дозах облучения. Разрывные прочность и удлинение увеличиваются при облучении дозами примерно до 50 Мрад, а при дозах 100—500 Мрад (облучение в реакторе) полиэфир интенсивно окрашивается. Сообщалось, что степень кристалличности, определяемая рентгенографически, при облучении увеличивается [304], уменьшается [305] или не меняется [300]. Снижение температуры стеклования при облучении в атомном реакторе дозами больше 1000 Мрад [306] является, вероятно, следствием снижения молекулярного веса полимера, а также пластифицирующего влияния образующихся низкомолекулярных продуктов деструкции. [c.193]

    Влияние примеси бора в исходном полиэфире на физико-механические свойства уретановых эластомеров [c.15]

    Олигомерные сложные полиэфиры адипиновой кислоты и гликолей с концевыми ОН-группами являются основными исходными соединениями для получения различных полиуретанов. На свойства полиуретанов большое влияние оказывает чистота исходных олигомеров и их функциональность. [c.49]

    Известно, что сложные полиэфиры наряду с ценными молекулами с концевыми ОН-группами, содержат циклические соединения того же состава, что и полиэфир, количество которых постоянно зависит от Мп полиэфира [37]. В связи с этим интересно было выяснить, происходят ли превраш ения этих побочных продуктов в процессе получения полиуретанов и установить их влияние на свойства последних. [c.49]

    Проведенное исследование показало, что циклические соединения всегда присутствующие в исходных полиэфирах, полученных в процессе равновесной поликонденсации, не принимают участия в реакции с диизоцианатами и не оказывают существенного влияния на свойства полиуретанов. [c.52]

    Физические свойства. Физические свойства полиэфиров, как и других классов высокомолекулярных соединений, определяются рядом факторов, таких как химическое строение цепи, молекулярный вес, фракционный состав. Большое число работ посвящено выяснению влияния строения полиэфиров на их физические свойства [90—95, 98—100, 102, 103, 374—385]. [c.23]

    В табл. 74 показано влияние строения полиэфира на свойства эластомеров на основе 1,5-нафтилендиизоцианата. Из данных табл. 74 очевидно, что метильные группы, способствующие взаимному отталкиванию полимерных цепей, ослабляют прочность эластомера. [c.342]

    Влияние строения сложного полиэфира на свойства полиуретановых эластомеров на основе сложных полиэфирдиолов  [c.348]

    Помимо изучения влияния молекулярного веса простого полиэфира на свойства эластомеров было исследовано и влияние количества ТДИ и MG A, [c.384]

    Авторами работы [89] изучена зависимость механической прочности изоциануратного пенопласта от температуры, а также влияние природы и количества модифицирующего полиэфира на свойства пенопласта при повышенных температурах. В качестве модификаторов использовали простой олигоэфир на основе глицерина и окиси пропилена с М 500 (Л-503) и сложный олигоэфир на основе адипиновой кислоты, диэтиленгликоля и триметилолпропана с М =2000 (П-2200). Показано, что с увеличением [c.123]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]


    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]

    Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. E тe твeннos что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепп. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях [c.540]

    В зависимости от взятой для поликоиденсации кислоты полиэфирные смолы целесообразно разделить на а) смолы на основе фталевой кислоты б) смолы на основе терефталевой кислоты в) смолы на основе ненасыщенных кислот. Влияние указанных кислот можно проследить на свойствах полиэфиров, полученных поликонденсацией с этиленгликолем. Фталевый ангидрид с этиленгликолем образует хрупкие аморфные смолы, не имеющие большого практического значения. Терефталевая кислота и ее эфиры образуют высокоплавкие кристаллические полимеры, применяемые для получения пленок и волокон. Непредельные кислоты сообщают полимеру особое свойство — способность в ре- [c.216]

    На прочность полимерных материалов большое влияние оказывает также форма надмолекулярных структур. Меняя условия синтеза, Г. Л. Слонимский, В. В. Коршак, С. В. Виноградова н сотр. получили полиэфир изофталевой кислоты и фенолфталеина фибриллярной и глобулярной формы. Механическ11с свойства этих образцов сильно различаются. Так, ударная вязкость образца с фибриллярной структурой составляет 6—10 кГ -см1см , а с глобулярной— 2—3 кГ см1см . Полимеры с глобулярной структурой, как правило, хрупки и раэруша[Отся при ударе. [c.234]

    Для оценки возможности получения в условиях акцепторно-каталитической полиэтерификации карборансодержащих сложных ЖК-полиэфиров с улучшенной растворимостью и термической устойчивостью был установлен характер влияния карборановых ядер на свойства известных ЖК-сополиарилатов. [c.175]

    Количественным фактором, позволяющим определить задачу переноса влаги и теплоты, является критерий Био. При сравнительно больших значениях числа Био (В 20) условия массообмена в большей мере определяются свойствами материала (внутренняя задача), а влияние внешних факторов на процесс незначительно, что представляет серьезные трудности для интенсификации сушки. Такая задача характерна для материалов, имеющих ультрамикропо-ры, влага в которых перемещается в результате твердофазной диффузии (гранулированные полиамиды, полиэфиры, полипропилен и др.). [c.242]

    Давно известно, что такие эфиры, как диэтиловый, являются отличными растворителями для реакции Гриньяра и для синтеза натрийорганических соединений. Циклические эфиры, как, например, 1,4-диоксан и ТГФ, также гч-ляются превосходными растворителями для различных ионных реакций, причем были отмечены особые свойства подобных циклических эфиров в процессе образования натрий-нафталинового комплекса при анионной полимеризации в присутствии этого комплекса с образованием "живущих" полимеров [ 25 - 27], при растворении металлического калия [ 28] и т.д. Кроме того, в 50-х годах было обнаружено, что линейные полиэфиры, называемые "глима-ми", например моноглим (1,2-диметоксиэтан) и диглим (диметиловый эфир диэтиленгликоля) [29], синтезированные в 1925 г., являются еще более подходящими растворителями, чем ТГФ. С тех пор как многие химики заинтересовались механизмом действия таких полярных апротонных растворителей с эфирными звеньями с точки зрения как теории растворов, так и теории реакций, прояснились различные явления, касающиеся растворения, ионизации и и влияния растворителя на скорость реакции [30 - 35]. [c.24]

    На прочность полимерных материалов большое влияние okj зывает также форма надмолекулярных структур. Меняя услови синтеза, Г. Л. Слонимский, В. В. Коршак, С. В. Виноградова сотр. получили полиэфир изофталевой кислоты и фенолфталеин фибриллярной и глобулярной формы. Механические свойства эти образцов сильно различаются, Так. ударная вязкость образц с фибриллярной структурой составляет 6—10 кГ- m m , а с гл( булярной — 2—3 кГ m I m . Полпмеры с глобулярной структуро) как Правило, хрупки и разрушаются при уларе. [c.234]

    Таким образом, различия в химической густоте сетки отражаются на свойствах пленок в свободном виде и на подложке. Отмегим, что такие эффекты не могли наблюдаться для сополимеров стирола с дивинилбензолом, в которых отсутствуют функциональиые группы, способные к сильному взаимодействию с поверхностью. В табл. 28 приведены также данные по влиянию молекулярного веса исходного полиэфира на эффективную плотность сшивки при одинаковом исходном соотношении ЫСО/ОН. С увеличением молекулярного веса полиэфира эффективная плотность сшивки у.меньшается как для свободных пленок, так и для пленок на подложке, что связано с уменьшением общей концентрации активно взаимодействующих с поверхностью функциональных групп. [c.179]

    Необходимо учитывать также возможность деструкции цепей растворенного полимера под влиянием растворителя или термического воздействия и в том случае, когда все связи в молекуле являются го-меополярными. Так, например, многие гетероцепные полимеры, как полиамиды, белки, полиэфиры, целлюлоза и др., легко распадаются под влиянием растворителей кислотного характера, а также под влиянием кислорода и других агентов. Растворенные молекулы полимера чрезвычайно чувствительны к термическому и механическому воздействиям и легко подвергаются дроблению даже при многократном пропускании через капиллярный вискозиметр или при определении тех или иных свойств при высоких температурах. Следовательно, при выборе метода исследования растворов полимеров необходимо учесть особенности их химического строения и стабильность, возможность химического взаимодействия с растворителем и продуманно подобрать условия проведгния измерений. [c.17]

    Влияние структуры на механические свойства отмечалось также Робертсоном и Шефердом [389], показавшими, что полиэфир, сшитый путем сополимеризации с винилацетатом или стиролом, обладает большей [c.213]

    Влияние природы диизоцианата на свойства полученного каучука типа вулколлана с полиэфирами этиленгликоля и адипиновой кислоты приводятся в табл. 62. Хорошим компонентом для синтеза вулколланов считается 1,5-нафтилендиизоцианат. [c.174]

    В свете современных представлений о структуре этих полимеров их можно рассматривать как блоксополимеры, построенные из гибкого сегмента (олигомерные полиэфиры или другие полимердиолы) и жесткого блока, образованного диизоцианатами и низкомолекулярными диолами или диаминами. В связи с этим значительное внимание уделено изучению влияния природы гибких и жестких блоков на свойства уретановых эластомеров. [c.37]

    Целью настоящей работы являлось проведение термомеханических исследований ряда уретановых эластомеров и изучение влияния на их свойства структуры цепи и характера пространственной сетки в зависимости от природы вулканизующего агента. В качестве объектов исследования выбраны вальцуемые уретановые каучуки с непредельными связями на основе простых или сложных полиэфиров, содержащие (СКУ-50 и СКУ-ПФ) или не содержащие (СКУ-50 и СКУ-ПФ ) трифункциональный структурирующий атент (триметилолпропан), а также каучук предельного состава на основе сложных полиэфиров (СКУ-8ПГ). Вулканизацию каучуков СКУ-50 и СКУ-ПФ осуществляли серой. Каучук СКУ-ВПГ вулканизовали перекисью дикумила или димером ТДИ. [c.85]

    Настоящее сообщение посвящено изучению влияния воздействия повышенной температуры, влаги, различных химических сред, на свойства уретановых термоэластонластов на основе сложных полиэфиров способ синтеза этих эластомеров описан нами ранее [72]. Для сравнения приведены данные по испытанию в тех же условиях десмопана-385 (фирма Байер , ФРГ), который широко используется в автомобилестроении. [c.99]

    Целью настоящей работы являлось изучение влияния плотности поперечного сшивания на динамические механические свойства уретановых эластомеров. В качестве объектов исследования были использованы полиуретаны, полученные на основе би- и полифункциональных полиэфиров адипиновой кислоты и этилен- и диэтиленгли-колей (ПЭА и ПДЭА). В качестве структурирующих агентов применяли триметилолпропан (ТМП) и глицерин (Г). Для получения полифункциональных полиэфиров их вводили в количестве ОД моль на 1 моль адипиновой кислоты. [c.105]

    ВЫ магния, цинка и алюминия действуют на них как катализаторы разложения. Силиконовые теплоносители почти негорючи, трудно воспламеняются, не поддерживают горения. Теплоноситель подогревают в теплообменнике электричеством, газом или другим способом и перекачивают в обогреваемую систему специальным насосом. Вся система работает без давления или при слегка повышенном давлении—за счет изменения объема теплоносителя в расширительном сосуде. Существенным недостатком такого типа теплоносителей является сравнительная легкость-гидролиза при высоких температурах даже под влиянием влаги из-воздуха. Поэтому,чтобы предотвратг ть попаданке влаги из воздуха, необходимо работать либо в закрытой системе, либо с воздушным клапаном, снабженным осушителем, помещенным в наиболее холодном месте установки.. При гидролизе выделяется фенол, который понижает температуру кипения теплоносителя, и образуются высшие полиэфиры, причем увеличиваются вязкость и плотность. Низко-кипящие фенолы ухудшают свойства теплоносителя, поэтому к нему предварительно добавляют ангидриды высших органичес- [c.313]

    Диалкиламинозамещенные полиэфиры представляют собой воскообразные продукты, диарил аминозамещенные — обладают каучукоподобными свойствами. Строение полиэфиров определяет весь комплекс физических свойств, в том числе и их растворимость. Алифатические полиэфиры растворяются значительно лучше, чем ароматические. Большинство алифатических полиэфиров хорошо растворяется в бензоле [94], хлорированных растворителях [401], феноле, крезолах. Ароматические полиэфиры растворимы в фенолах, пиридине [3871, триэтаноламине [402. Строение полиэфиров оказывает влияние и на свойства их растворов. Батцер [381] рассмотрел вопрос о связи числа вязкости ряда полиэфиров с формой макромолекулы в растворе. Для полиэфиров янтарной и пимелиновой кислот с гександиолом зависимость числа вязкости от концентрации линейна [382]. В случае же разветвленных полиэфиров тех же кислот с гексан-триолом кривая, выражающая эту зависимость, проходит через минимум или максимум. Батцер предложил величину отклонения от линейной зависимости применять как меру оценки степени разветвленности макромолекулы. Влияние на температуру плавления и кристалличность полиэфиров боковых заместителей было рассмотрено Доком и Кемпбеллом [384]. [c.24]


Смотреть страницы где упоминается термин Полиэфиры влияние на свойства: [c.272]    [c.65]    [c.10]    [c.117]    [c.296]    [c.212]    [c.257]    [c.59]    [c.23]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.212 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние состава и с i роения цепи на свойства полиэфиров

Сложные полиэфиры влияние структуры на свойства полимеров

Функциональность влияние на свойства полиэфиров



© 2025 chem21.info Реклама на сайте