Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя кислотность

    Классическими гомогенными катализаторами изомеризации олефинов, известными более 100 лет, являются неорганические и органические кислоты. В 50 гг. было найдено, что изомеризация активируется не только кислотами, но и основаниями, и работы 60 гг. посвящены преимущественно основному катализу. Однако в последнее десятилетие быстро растет интерес к новому направлению гомогенного катализа — катализу комплексами металлов. Эти разные, на первый взгляд, типы активирования имеют много общего, так как кислотно-основный катализ связан с координацией молекул растворителя, катализатора и олефина в активный комплекс, а при катализе комплексами металлов образование ионов углеводородов и их превращения представляют собой один из этапов изменения олефина. Оба типа активирования характеризуются общими корреляционными кинетическими закономерностями (уравнение Бренстеда применимо во всех случаях), сходным влиянием растворителя и т. д. [c.88]


    Амфотерные растворители проявляют слабо выраженный кислотно-основной характер, т. е. они являются более слабыми кислотами, чем протогенные, и более слабыми основаниями, чем протофильные. К амфотерным растворителям относят воду, спирты, кетоны и др. Резкую границу между амфотерными и протогенными или протофильными растворителями провести трудно, так как на характер кислотно-основного взаимодействия и на направление процесса существенное влияние оказывают кислотно-основные свойства взаимодействующего партнера. [c.35]

    По влиянию на кислотно-основные свойства растворенного вещества растворители подразделяют на нивелирующие и дифференцирующие. В нивелирующих растворителях сила некоторых кислот, оснований и других электролитов становится примерно одинаковой, а в дифференцирующих — разной. Уравнивание силы электролитов в нивелирующих растворителях имеет не всеобщий характер нельзя считать, например, что в нивелирующих растворителях все кислоты становятся сильными или все слабыми. Многие минеральные кислоты — хлорная, хлороводородная, бромоводородная, азотная и др. в водном растворе Диссоциированы нацело с образованием Н3О+ как продукта взаимодействия кислоты с водой. Вода оказывает нивелирующее действие на силу сильных кислот. [c.35]

    При исследовании влияния растворителей на свойства электролитов — на их растворимость, силу, кислотность, а также на электродвижущие силы — широко использовался метод единых нулевых коэффициентов активности уо-Эти коэффициенты, в отличие от обычных, отнесены к состоянию ионов или молекул в бесконечно разбавленном водном растворе и определяются работой переноса ионов или молекул из бесконечно разбавленного неводного раствора в воду. [c.6]

    По этой схеме можно рассматривать диссоциацию уже готовой катионной кислоты, т1 е. гидролиз соли основания в различных растворителях, но не влияние растворителя на диссоциацию основания. Из этой схемы вытекает ложное следствие, что диссоциация основания происходит за счет взаимодействия его с растворителем с образованием ионов лиония М№, а не за счет взаимодействия с молекулами растворителя с образованием ионов лиата (М — Н ). Конечно, в растворе всегда есть ионы лиония и ионы лиата однако в результате диссоциации оснований в растворе всегда появляется избыток ионов лиата (М — Н) . Таким образом, первичным процессом является взаимодействие незаряженной молекулы основания с молекулами растворителя с образованием ионов по схеме В + М В№ + (М — Н) . Диссоциация основания в водном растворе зависит от константы кислотности молекул Н.2О или константы основности иона ОНа не от константы кислот- ности иона НдО" или константы основности молекулы Н О, как это имеет место в случае незаряженных или анионных кислот. [c.298]


    Конечно, влияние растворителя на обмен ионов водорода на катионы не исчерпывается только влиянием основности растворителя как и при обмене любых катионов, играет роль диэлектрическая проницаемость, снижение которой является дополнительным фактором, изменяющим кислотность катионитов. При обмене ионов водорода на катионы играет также большую роль изменение набухаемости различных форм ионита в различных растворителях. Этот эффект здесь более значителен, чем при обмене катионов металлов, так как характер связи ионов водорода в ионите отличается от характера его связи с ионами металлов. [c.371]

    Есть и третий недостаток метода Гамметта, заключающийся в том, что иногда окраска индикатора изменяется не в связи с изменением соотношения между разными формами индикаторов B№ и В, а в связи с тем, что окраска одной из форм индикатора изменяется под влиянием растворителя. Однако главный недостаток метода Гамметта состоит в том, что влияние растворителей на заряженную и незаряженную формы индикатора не одинаково, в связи с чем не передает истинной кислотности неводных растворов. [c.416]

    ИСПОЛЬЗОВАНИЕ ВЛИЯНИЯ РАСТВОРИТЕЛЕЙ НА СВОЙСТВА ЭЛЕКТРОЛИТОВ ПРИ КИСЛОТНО-ОСНОВНОМ ТИТРОВАНИИ и ПРИ ДРУГИХ МЕТОДАХ АНАЛИЗА [c.440]

    Степень влияния воды зависит от соотношения шкал кислотности неводного растворителя и воды и их расположения. Например, вода практически не оказывает влияния на кислотные пределы шкалы низших спиртов, но значительно изменяет основные пределы шкалы изопропилового и т/ ет-бутилового спиртов (рис. 145), так как основные пределы их шкалы значительно больше, чем у воды. [c.428]

    Выбор метода. При оценке и выборе методов кислотно-основного титрования необходимо учитывать влияние растворителя не только на свойства определяемого вещества, но и на свойства продуктов взаимодействия титруемого соединения с реактивом. Условия кислотно-основного титрования определяются рядом факторов, которые можно разбить на три группы. [c.430]

    Определение кислоты по Бренстеду как соединения, отщепляющего в растворе протон, естественно, приводит к выводу о влиянии на кислотность получающейся системы природы растворителя, так как отщепление протона вызывается сольватацией его молекулами растворителя. [c.249]

    Шведский ученый Аррениус в 1887 г. объяснил отступления электролитов от законов разбавленных растворов обратимым распадом электролитов на ионы под влиянием растворителя вследствие этого число осмотически деятельных частиц возрастает, что зависит от степени диссоциации электролита в данных условиях. Распад на ионы называется электролитической диссоциацией. Степень диссоциации — это доля молекул, распавшихся на ионы при равновесии. Соли диссоциируют на катионы металлов и анионы кислотных остатков. Кислоты образуют катионы водорода и кислотные остатки в качестве анионов, основания образуют гидроксильные отрицательные ионы и металлические положительные ионы. Например  [c.156]

    Учет характера кислотно-основных взаимодействий помогает вывести четкие закономерности влияния растворителей на силу кислот и оснований. [c.58]

    Влияние растворителя на кислотно-основное равновесие [c.238]

    Аналогичная зависимость между энтальпией гидратации АК и в случае взаимодействия АК с урацилом, 6-азаурацилом и тимином отсутствует. Это свидетельствует о том, что влияние растворителя на процесс взаимодействия в указанных системах не является доминирующим. Вследствие того, что взаимодействие между боковыми группами АК и упомянутыми выше НО не обнаружено, можно предположить возможность кислотно-основного взаимодействия между концевыми цвиттерионными группами аминокислот и боковыми группами нуклеиновых оснований (NH, СО). С целью проверки данного предположения необходимо рассмотреть корреляции между коэффициентами парных взаимодействий и изменениями энтальпий диссоциации цвиттерионных групп АК. Для взаимодействия с урацилом линейные корреляции обнаружены для зависимости коэффициентов парных взаимодействий от энтальпий диссоциации цвиттерионной карбоксилатной группы АК. На рис. 4.21 видны две линейные зависимости [СОО"-гр.]) I - ряд Ala-Phe-Thr-Gly, II - ряд Leu-Val-Gly-Asn, причем I имеет больший угол наклона, чем II. Обе [c.241]

    В силу сложного характера межмолекулярных взаимодействий растворенного вещества с растворителем количественное описание влияния растворителей на равновесие возможно только в наиболее простых и благоприятных случаях (см., например, работу [71]). Поэтому в последующих разделах будут рассмотрены в основном качественные характеристики таких эффектов с использованием в качестве примеров кислотно-основ- ого, таутомерного и других равновесных превращений. [c.127]


    Влияние растворителей на кислотно-основное равновесие  [c.128]

Таблица 4.1. Влияние растворителей на кислотно-основное равновесие HA + -fSH === 5Н2 + А в зависимости от 2 Таблица 4.1. <a href="/info/132078">Влияние растворителей</a> на <a href="/info/5317">кислотно-основное равновесие</a> HA + -fSH === 5Н2 + А в зависимости от 2
    Интуитивно можно предполагать, что кислотность и основность органических соединений в газовой фазе и в растворе должны быть различными. В то время как в газовой фазе кислотность и основность — это собственные свойства индивидуальных молекул, в жидкой фазе они определяются всей фазой в целом в силу взаимодействий между молекулами растворителя и растворенного вещества. В растворе кислотность и основность отражают как влияние растворителя, так и присущую растворенному веществу способность присоединять и отдавать протоны. По этой причине изучению взаимного влияния свойств растворенного вещества и эффектов растворителя должно предшествовать определение кислотности и основности в отсутствие растворителя. До последнего времени, однако, соответствующие исследования были не слишком плодотворными из-за отсутствия методов определения кислотности и основности в газовой фазе. [c.133]

    Путем измерения с помощью указанных выше методов констант равновесия /С= [А ] [ВН]/[НА] [В ] реакций переноса протона типа реакции (4.16) удалось определить относительные собственные кислотности и основности молекул в газовой фазе. Результаты измерения аналогичных параметров реакций переноса протона типа реакции (4.17) (здесь 8 —молекула растворителя) позволяют оценить влияние растворителя при ступенчатой сольватации ионов, т. е. при последовательном присоединении молекул растворителя (п может изменяться от О до 4— 9), и тем самым изучать системы промежуточные между газофазными системами и растворами  [c.134]

    Путем сравнения кислотности замещенных фенолов в газовой фазе и в растворе было показано, что растворитель не только определяет кислотность фенолов, но и модифицирует влияние заместителей на кислотность. Дифференцированная сольватация заместителей может существенно изменять относи-> тельное влияние заместителей на кислотность фенолов [131]. Аналогичное влияние растворителя на зависимость кислотности и основности от природы заместителей было обнаружено и в ряду 4-замещенных пиридинов [33]. [c.138]

    В разд. 3.3.1 и 4.2.1 уже рассматривались равновесия типа кислота Бренстеда — основание Бренстеда, в которых сам растворитель участвует как кислота или как основание. В этом разделе будут приведены примеры влияния растворителей на такие реакции переноса протона, в которых растворитель непосредственно не участвует. Интерес к исследованию такого рода кислотно-основных равновесий в неводных растворителях стимулировали основополагающие работы Барроу и др. [164], изучавших кислотно-основные реакции между карбоновыми кислотами и аминами в тетрахлорметане и хлороформе. [c.160]

    Заканчивая рассмотрение методов определения р/Са в условиях непостоянства м,п.п. одной или обеих крайних форм, отметим, что если влияние растворителя на м. п. п. не удается элиминировать с помощью-одного метода, можно попытаться воспользоваться комбинацией двух методов. Подобная комбинация двух методов в принципе может учесть более сложное влияние на м. п. п., чем каждый метод в отдельности. Разумеется, при этом имеет смысл комбинировать только такие методы, которые основаны на разных моделях зависимостей м.п. п. от кислотности среды. [c.134]

    Эта широко известная книга написана одним из создателей физической органической химии, ставшей в последнее время по существу самостоятельной отраслью науки, основной задачей которой является установление количественной связи между строением и реакционной способностью органических соединений. В книге рассматриваются вопросы классической и статистической термодинамики химических реакций, интерпретации кинетических данных, влияния растворителя на реакционную способность, количественного изучения кислот и оснований. Большое внимание уделено теории переходного состояния, солевым эффектам, кислотно-основному катализу, корреляционным уравнениям и изокинетическим зависимостям. [c.4]

    Эти явления можно объяснить влиянием растворителя на вклад резонансной структуры 6, изображенной на стр. 462. В высокополярных растворителях типа воды, образующих сильные водородные связи, вклад полярной структуры 6 должен быть больше, чем в инертных растворителях с низкой диэлектрической проницаемостью. В результате кислоты, содержащие - -7-заместители, в водных растворах стабилизированы резонансом в относительно большей степени и имеют относительно меньшие константы кислотности. [c.498]

    Изучая влияние растворителей на силу кислот. А, Ганч установил, что в растворах кислотные свойства проявляю" не самой кислотой, а сольватированными катионами водорода. [c.401]

    Необходимо учитывать также возможность деструкции цепей растворенного полимера под влиянием растворителя или термического воздействия и в том случае, когда все связи в молекуле являются го-меополярными. Так, например, многие гетероцепные полимеры, как полиамиды, белки, полиэфиры, целлюлоза и др., легко распадаются под влиянием растворителей кислотного характера, а также под влиянием кислорода и других агентов. Растворенные молекулы полимера чрезвычайно чувствительны к термическому и механическому воздействиям и легко подвергаются дроблению даже при многократном пропускании через капиллярный вискозиметр или при определении тех или иных свойств при высоких температурах. Следовательно, при выборе метода исследования растворов полимеров необходимо учесть особенности их химического строения и стабильность, возможность химического взаимодействия с растворителем и продуманно подобрать условия проведгния измерений. [c.17]

    В спектрофотометрической иодометрии для получения правильных результатов анализа необходимо итывать влияние на спектр поглощения растворов иода различных факторов, а именно влияние растворителя, кислотности среды, явления гидролиза, наличия иодида и др. [c.210]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Существенным достоинством протолитической теории является учет влияния растворителя на процесс кислотно-основного взаимодействия. Диссоциацию кислоты НА в растворителе 5о1у можно представить схемой [c.31]

    Наиболее полные сведения о характере взаимодействия кислот с растворителями могли бы быть получены прп исследованпи влияния растворителя на частоту полосы ОН-группы, являющуюся носптелем кислотных свойств у большинства кислот. Однако наблюдения за полосой ОН-групны в спЬктрах комбинационного рассеяния затруднены вследствие ее малой интенсивности и наложения на нее в ряде случаев частоты ОН-группы от растворителя. Такие наблюдения оказалпсь возможными прп исследовании дейтериро-ванных в гидроксильной группе кислот. Замещение водорода на дейтерий смещает частоту ОН-группы примерно на 900 см 1 в сторону меньших частот и переносит ее в оптически пустую область. Этим исключается одно затруднение, но второе — весьма малая интенсивность полосы спектра — не устраняется. [c.256]

    Следовательно, под влиянием растворителей одинаковой природы изменение кислотности одной группы кислот одного-и того же порядка и способность к выделению протона молеку.тами НА мало изменяется в пределах одной группы растворителей и кислот. В связи с тем, что фенолы одинаково взаимодействуют с растворителями, содержащими и не содержащими гидроксильные группы (только в качестве доноров протонов), изменение их собственной кислотности, т. е. сродства к протону, при переходе от одной группы растворителей к другой отличается от изменения ее у карбоновых кислот. Изменение собственной кислотности вещества определяется Я, е т, являющейся частью VOjjAM зависящей от растворителя. [c.328]

    Причиной отсутствия компенсации во влиянии растворителей на энергию ионов и, следовательно, причиной дифференцирующего действия является различие в энергии взаимодействия растворителей с кислотными группами кислот различной природы и с различно ноляризованными ионами, образованными этими кислотами. [c.337]

    Следует сказать, что это влияние растворителя не исключает найденных ранее эффектов. По существу, отношение e NJ2, i RTeeq определяет изменение собственной кислотности НА под влиянием возникшего отрицательного заряда, т. е. Ig ( К ян,а - "на-)- [c.358]

    Под влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований и солей. В зависимости от растворителя одно и то же вещество может быть неэлектролитом, сильным или слабым элехгтролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Эта изменчивость свойств веш еств под влиянием растворителей может быть с успехом использована для решения ряда аналитических задач при кислотно-основном тптрованпи, при титровании по методу осаждения, при полярографическом анализе п при других методах анализа. [c.440]

    Таким образом, рассмотрено влияние растворителей по отношению ко всем случаям кислотно-основного титрования. На основанни выведенных уравнений моншо выбрать растворитель или группу растворителей, улучшающих условия титрования в данном случае. [c.450]

    В иоследовз ниях последних лет, особенно в работах Н. А. Измайлова, было показано, что ПО Д влиянием неводных растворителей изменяются свойства любых электролитов кислот, оснований, солей. В зависимости от свойств и структуры растворителя одно и то же вещество может быть неэлектролитом, Сильным или слабым электролитом, кислотой или основанием или же вовсе не проявлять кислотно-основных свойств. Подобная зависимость ц изменение свойств вещества под влиянием растворителей широко используются в данное время для решения ряда аналитических задач при электрометрическом титровании, поля-ро графи ческом, амперометричеоком и других методах физикохимического анализа для а) повышения либо понижения растворимости вещества б) усиления либо ослабления силы кислот, оснований и солей в) изменения соотношения между ионным [c.129]

    Дело серьезное. В предыдущей главе много говорилось о том, что влияние растворителя на протекание химического процесса определяется прежде всего двумя его характеристиками до-норно-ацепторными (кислотно-основными) свойствами и диэлектрической проницаемостью. Однако мы не вольны, работая с индивидуальными растворителями, выбирать оба свойства сразу. [c.47]

    Специфическая сольватация анионов. Зарядный тгш кислоты шрает очень важную роль во влиянии растворителя иа кислотность. Однако кислоты даже одинакового заряда могут сильно отличаться по отиосительной кислотиости в двух разных растворителях. Нанример, при переходе от метанола [c.248]

    Свобода и др. [140] выполнили факторный анализ матриц, данных, содержащих 35 физико-химических констант и эмпирических параметров полярности (см. гл. 7) 85 растворителей. На этой базе был получен ортогональный набор четырех параметров, которые можно связать с полярностью растворителя, выраженной в виде функции Кирквуда (е,-—1)/(2бг+1), поляризуемостью растворителя, выраженной в виде функции показателя преломления пР-— )1 п + ), а также с льюисовой кислотностью и основностью растворителя. Отсюда следует, что для количественного эмпирического описания влияния растворителя на химические реакции и поглощение света в общем случае необходимы четыре параметра два для описания неспецифической сольватации, обусловленной полярностью и дисперсионными взаимодействиями, а два других — для описания специфической сольватации, связанной с электрофильной и нуклеофильной активностью растворителя. Для корреляции эффектов растворителей с помощью только одного эмпирического параметра лучше всего пользоваться параметром т(30), значения которого определяют, изучая поглощение сольвато-хромного красителя в УФ- и видимой областях (см. разд. 6.2.1 и 7.4). [c.120]

    На интерпретацию влияния растворителей и заместителей На кислотно-основное равновесие большое влияние оказали работы Браумана и Блэра [34], которые показали, что относительная кислотность алифатических спиртов при переходе от растворов к газовой фазе меняется на обратную. В газовой фазе кислотность спиртов повышается в следующем порядке [34, 125, 126]  [c.136]

    Растворители существенно влияют не только на таутомерное равновесие. От состава среды в большой степени зависит положение вращательного и конформационного равновесия [81— 83], цис-транс-язои рш (Е—2-изомерии), валентной изомерии [84], ионизации, диссоциации и ассоциации [85] (некоторые из таких превращений были рассмотрены в разд. 2.6), комплексного равновесия [86], кислотно-основного равновесия и т.п. В этом разделе будет рассмотрено лишь несколько примеров, которые помогут понять влияние растворителей на столь различные ти-лы равновесных превращений. [c.160]


Смотреть страницы где упоминается термин Влияние растворителя кислотность: [c.217]    [c.345]    [c.247]    [c.253]    [c.1696]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.229 , c.230 , c.234 , c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние кислотности



© 2025 chem21.info Реклама на сайте