Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость окалины

    В производстве карбамида на установке дистилляции в узле конденсации аммиака произошел взрыв газовой смеси. Как показали проведенные анализы и расчеты, при допущенных отклонениях от установленного режима работы в газовой фазе конденсаторов аммиака образовалась взрывоопасная смесь водорода и аммиака с кислородом. Импульсом взрыва послужили искры от ударов частиц окалины и щлака о стенки внутри системы (конденсаторах или трубопроводах) при резком, скачкообразном увеличении скорости движения газа после отогрева замороженного [c.143]


    Трубопроводную арматуру выбирают по каталогам. На корпусе арматуры обозначаются условный диаметр прохода и рабочее давление, а также ставится условный индекс, указывающий тип арматуры и ее основные данные. Арматура должна использоваться строго по назначению в соответствии с техническими характеристиками. Например, не допускается использовать запорную арматуру в качестве регулирующей или дроссельной, так как дроссельная работает в условиях значительных перепадов давлений и в ней образуются значительные скорости потоков, что вызывает вибрации клапанов, дисков и других дросселирующих элементов. Арматура должна устанавливаться на трубопроводе так, чтобы направление движения среды совпадало с направлением стрелки на корпусе. Перед установкой арматуры трубопровод должен быть тщательно промыт и очищен от песка, грязи, окалины, потому что попадание твердых частиц на уплотнительные поверхности выводит их из строя. [c.274]

    Для изучения возможности загорания стальных трубопроводов при движении по ним с большой скоростью различных загрязнений в ФРГ была проведена исследовательская работа [34]. В поток кислорода чистотой 99,6%, движущийся с разной скоростью, вводили различные твердые частицы диаметром до 5 мм (прокатную окалину, сварочный грат, ржавчину, песок, кокс, каменный уголь и смеси порошка железа и песка). Опыты показали, что не происходило загорания трубопроводов при введении в поток кислорода песка и ржавчины ири скорости потока до 44 м/сек. При скорости кислорода около 82 м/сек и давлении 2,85 Мн/м (29 кГ/см ) и при условии введения в поток частиц прокатной окалины, кокса, каменного угля и смеси из 20% порошка железа и 80% песка происходило загорание колен трубопровода. [c.84]

    Таким образом, константа скорости окалинообразования однофазной окалины йа [см. уравнение (91)] равна удвоенному коэффициенту роста данного слоя К- [c.59]

    Система дифференциальных уравнений (154) и (156) выражает зависимость между скоростью роста отдельных слоев окалины и свойствами окислов, составляющих окалину, представленными величинами А, В, fjf и j/ . Эти величины без большой погрешности можно принять постоянными, зависящими только от температуры. [c.71]

    Начинается вторая стадия окисления металла сопровождающаяся образованием микропустот между металлом и окалиной. При этом скорость процесса окисления металла снижается вследствие уменьшения эффективного поперечного сечения для диффузии катионов металла из металла в окалину. Однако существующий градиент химического потенциала окислителя в окалине и связанный с ним градиент концентрации дефектов в кристаллической решетке окисла обусловливают дальнейшую диффузию металла наружу. В результате процесса диффузии внутренняя поверхность окалины обогащается металлом и термодинамическое равновесие нарушается. Градиент концентрации дефектов в кристаллической решетке окалины начинает уменьшаться и система окалина—окислитель стремится к равновесию с окислителем. [c.74]


    В этом случае кривая состава образующейся окалины (см. рис. 65) никогда не достигнет координаты, отвечающей составу окисляемого сплава, т. е. величины а. Вследствие этого окисляемый образец сплава будет все время обедняться компонентом Ме и процесс никогда не придет к состоянию стабилизации. Окисление и обеднение образца компонентом Ме происходит до тех пор, пока в окисляемом образце сплава не останется почти один компонент М( и состав окисляемого образца не сравняется по всей его толщине. Эта схема процесса может иметь место только в том случае, если диффузия компонента Ме из глубинных слоев сплава к поверхности или диффузия кислорода в обратном направлении не имеют каких-либо других, более удобных, путей и происходят с одинаковой скоростью по всему сечению окисляемого образца (окисление монокристаллов сплавов или окисление сплавов при равенстве скоростей диффузии реагентов через кристаллы сплава и по границам зерен). [c.98]

    Толщина диффузионного слоя в сплаве в диффузионной области процесса, очевидно, будет определяться скоростью диффузии металлов Ме и М( в сплаве. Если принять, что в диффузионной области процесса окисления сплава скорость процесса окисления определяется скоростью диффузии реагентов через слой окалины, а скорость диффузии компонентов сплава через диффузионный слой сплава является подчиненным фактором, то большей относительной скорости диффузии компонента Ме в сравнении со скоростью диффузии компонента М1 в сплаве должна отвечать и большая толщина диффузионного слоя И, наоборот, меньшей относительной скорости компонента Ме должна отвечать и меньшая толщина диффузионного слоя. [c.99]

    Для выражения скорости диффузии компонентов через гетерогенные слои сложного строения, образующиеся при окислении бинарных сплавов, можно применять уравнение, по форме аналогичное уравнению (97), но в котором вместо значения коэффициента диффузии кц будет стоять величина эффективного коэффициента диффузии ( д)э. Значение этого коэффициента является сложной функцией истинных коэффициентов диффузии и величин, определяющих структуру слоя. Таким образом, уравнение для скорости диффузии компонентов через слои окалины сложного строения будет иметь вид [c.100]

    Жаростойкость дисперсноупрочненных композиций зависит также от метода их получения (повышают жаростойкость методы получения композиций, обеспечивающие меньшую степень коагуляции частиц упрочняющих окислов в металлической матрице), пористости композиций (которая снижает жаростойкость), температуры (которая не-только повышает скорость окисления, но и изменяет стабильность упрочняющих окислов в металлической матрице, механизм их попадания в окалину, а также механизм и характер контроля процесса окисления), температуры спекания композиций, изменения летучести окалины, отслаивания окалины и др. [c.111]

    Опытные данные о влиянии скорости движения газовой среды на скорость окисления металлов (рис. 38, 39 и 96), согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы /7-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина — газ, т. е. внешней массопередачей (см. с. 65). Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя. [c.135]

    Как указывалось выше, колебания температуры при нагреве или эксплуатации металлов при высоких температурах, особенно переменные нагрев и охлаждение, увеличивают скорость окисления металлов, например железа и сталей, так как в защитной окисной пленке вследствие возникновения в ней термических напряжений образуются трещины и она может отслаиваться от металла, т. е, нарушается сохранность защитной пленки в связи с низкой ее термостойкостью. В ряде случаев термостойкость может быть повышена за счет внутреннего окисления сплава, способствующего врастанию образующейся окалины в металл. [c.136]

    Наиболее простой метод испытания металлов на газовую коррозию в воздухе состоит в помещении образцов на определенное время в электрическую муфельную печь при заданной температуре. Образцы окисляются, а затем по увеличению массы или по убыли массы после удаления продуктов коррозии (окалины) определяют среднюю скорость газовой коррозии за время окисления. Образцы помещают в открытые фарфоровые или кварцевые тигли, которые находятся в гнездах подставки из жаростойкой стали или нихрома, что позволяет одновременно устанавливать все тигли в печь и извлекать их оттуда (рис. 319). Перед извлечением тиглей из печи их закрывают крышками, чтобы избежать потери части окалины, кусочки которой при остывании образцов часто от них отскакивают. [c.437]


    Очистка газа от механических примесей. Для предохранения оборудования от преждевременного износа воздух или газ, всасываемый в машину, должен быть очищен от твердых частиц (пыли, песка, окалины, продуктов коррозии). Для очистки газа применяют масляные пылеуловители, висциновые фильтры и циклонные сепараторы. Принцип действия масляного пылеуловителя заключается в том, что в корпусе аппарата поток газа теряет скорость и изменяет направление над зеркалом солярового масла, в результате чего из газа выпадают крупные твердые частицы, поглощаемые маслом. Затем газ проходит через фильтр для дополнительной очистки. Загрязненное масло из пылеуловителей периодически удаляется. Такие же аппараты служат в качестве масловлагоотделителей. [c.284]

    Электризация в потоке происходит при сливе, наливе и перекачке органических жидкостей по металлическим и неметаллическим (из полиэтилена, стекла, фторопласта и др.) трубопроводам. Количество образующегося статического электричества в этом случае зависит от диэлектрических свойств, кинематической вязкости, скорости движения и температуры жидкости, диаметра, длины и материала трубопровода, состояния его внутренней поверхности (шероховатости, наличия окалины и др.). [c.110]

    Увеличить в десятки раз скорость коррозии стали в морской воде может оставшаяся на металле прокатная окалина, верхним слоем которой является РегОз или комбинация окислов, которые являются весьма сильными катодами, имеющими электродный потенциал в морской воде на 0,2—0,3 В больше потенциала основного металла. [c.187]

    На поздних стадиях окисления скорость реакции зависит от того, остается ли толстая пленка окалины сплошной или в ней по мере роста образуются трещины и поры, снижающие ее защитные свойства. Пленки продуктов реакции обычно хрупки и малопластичны, поэтому возникновение трещин зависит в известной мере от того, претерпевает ли пленка по мере роста растяжение, которое способствует разрушению, или она образуется при сжатии. Это, в свою очередь, зависит от того, как соотносятся объемы продуктов реакции и прореагировавшего металла [91. Если [c.191]

    При параболической зависимости скорость роста пленки определяется диффузией ионов или миграцией электронов через слой окалины и, следовательно, обратно пропорциональна толщине этого слоя [c.193]

    Другим примером может служить поведение никеля, погруженного в расплав буры на глубину 3 мм при температуре 780 °С и давлении 0,1 МПа (рис. 10.6). В этих условиях скорость окисления низка вследствие ограниченного поступления кислорода из газовой фазы. При контакте никеля с платиновой или серебряной сеткой, выступающей над поверхностью расплава, коррозия никеля сильно ускоряется (в 35—175 раз при продолжительности опыта 14). При этом никель корродирует быстрее, чем в атмосфере чистого кислорода при той же температуре, так как здесь не образуется защитная окалина NiO. Вместо этого ионы Ni + растворяются в буре, а платина работает как кислородный электрод. В этой ситуации разность потенциалов между Pt и Ni составляет 0,7 В. Добавление в расплав буры 1 % FeO еще более ускоряет процесс окисления (возможно, ионы Fe + у поверхности электролита окисляются кислородом до Fe +, а ирны Fe + снова восстанавливаются либо на катоде, либо в процессе работы локальных элементов на никелевом аноде). [c.199]

    В диапазоне температур 260—1025 °С пленка СПаО покрыта сверху пленкой СиО. При температурах свыше 400—500 °С закон окисления меняется с логарифмического на параболический. При температуре более 1025 °С на воздухе образуется только СиаО. Скорость окисления меди несколько выше, чем у железа, и значительно превышает скорость окисления никеля или термостойких Сг — Ы1-сплавов. В этом легко убедиться, взглянув на температуры [44], ниже которых потери на образование окалины на воздухе не превышают 2—4 г/(м -ч)  [c.202]

    ПЕСКОСТРУЙНАЯ ОБРАБОТКА. При использовании этого метода окалина удаляется движущимися с большой скоростью частицами, которые направляются струей воздуха или с помощью высокооборотных роторных аппаратов. Для пескоструйной обработки обычно применяют песок, а иногда также стальную дробь, карбид кремния, оксид алюминия, тугоплавкий шлак или побочные продукты производства шлаковаты. [c.253]

    Средние значения тепловых сопротивлений от загрязнения теплопередающей поверхности учитываются по данным табл. 1Х.З. Сопротивления накипи и окалины принимаются в расчет при наличии условий их образования. С повышением скорости воды слой загрязнения со стороны воды [c.493]

    Железный катализатор, полученный при восстановлении водородом магнетита или прокатной окалины, и промотированный окисью калия, эффективен при 204—260X1. При температуре 260 °С и давлении 28 ат можно применить объемную скорость 600 ч . Допустимые объемные скорости почти прямо пропорциональны давлению. Железные катализаторы использовались в установках со стационарным кипящим слоем в г. Броуновилле [c.335]

    Опасным является попадание сварочного грата или каких-либо металлических предметов в проточную часть машины. Как показано в работе [34], введение в поток кислорода, движущегося со скоростью 30—80 м1сек, прокатной окалины и сварочного грата приводило к загоранию изогнутых участков кислородопроводов. Учитывая, что в кислородных турбокомпрессорах скорости потока значительно больше, становится очевидной необходимость внимательного отношения к очистке кислорода перед сжатием от механических примесей, удалению [c.178]

Рис. 5.31. Жаростойкость сплавов ЭИ703 (а) и ВЖ98 (б) в зависимости от скорости ТР и температуры i продуктов сгорания топлива Т-7 (без снятия окалины). Коэффициент избытка воздуха Рис. 5.31. <a href="/info/317344">Жаростойкость сплавов</a> ЭИ703 (а) и ВЖ98 (б) в зависимости от скорости ТР и температуры i <a href="/info/336198">продуктов сгорания топлива</a> Т-7 (без <a href="/info/858681">снятия окалины</a>). Коэффициент избытка воздуха
    В результате неоднократного применения способа паровоздушного выжига кокса появляется еще один существенный дефект быстрый износ переточных трубопроводов (перетоков). Особенно быстро выходят из строя перетоки из пода в потолок, несколько медленнее — перетоки из конвекционной секции печи в радиантную и выходные трубы, подсоединяемые к основной трансферной линии. Такой интенсивный износ можно объяснить следующим образом покрытые толстым слоем тепловой изоляции переточные трубы при выжиге кокса нагреваются до очень высокой температуры, так как отсутствует отвод тепла в окружающую атмосферу. При перегреве металл становится мягким, а вследствие больших скоростей движения смеси пара и воздуха с окалиной и частичками кокса наряду с коррозией происходит большой эрозионный износ. [c.196]

    Интенсификация эксплуатации печей достигается не только улучшением сжигания топлива, но и повышением передачи тепла сырью, проходящему по трубчатым змеевикам. Коэффициент теплопередачи существенно зависит от чистоты наружной и внутренней поверхностей змеевика печи, а также от скорости движения потоков сырья. В процессе работы печи наружная поверхность труб покрывается окалиной, налетами сажи и золы, а внутренняя — отложениями солей и кокса. Своевременная тщательная очистка поверхнос1ей трубчатого змеевика — очень [c.272]

    Двухслойность однофазной окалины может быть объяснена одновременной встречной диффузией реагентов (металла и окислителя) наружный слой окалины образуется вследствие диффузии металла наружу, а внутренний — вследствие диффузии окислителя внутрь. Однако при окислении указанных выше металлов установлено, что скорость диффузии металла через окалину на несколько порядков выше, чем окислителя. [c.74]

    Диффузии ионов никеля (г,- = 0,78 А) через эту шпинель, в то время как испарение СГ2О3 с поверхности окалины создает градиент концентрации ионов Сг ,. что приводит к их диффузии (г,- = = 0,64 А) через шпинель, но с очень малой скоростью. [c.103]

    Рост внешнего слоя окалины тормозит развитие слоя внутреннего окисления, т. е. подокалины. Если дополнительно предположить, что посторонние ионы во внешнем слое СпаО не влияют на скорость его роста и что концентрации металла Ме на новерх- [c.106]

    Скорость окисления железа при 700—950° С не зависит от ро,, если в окалине присутствуют FegOi и Fe O , но при низком ро, (равновесие между СО и СО2), когда на поверхности железа образуется только FeO, зависимость скорости окисления от ро выражается уравнением [c.132]

    В абсорберах тарельчатого или насадочного типа процессы подготовки газа стараются вести при режимах, приближающихся к режиму "эмульгирования". Именно в этом случае достигается максимум скорости процессов массообмена. Удержать процесс в этом режиме очень трудно, и практически скорость газа в абсорбционных колоннах составляет примерно 30% от скорости эмульгирования. При попадани е в абсорбент примесей, обладающих поверхностно-активными или стабилизирующими пену свойствами, эмульгирование и последующее интенсивное пенообразование наступают при значительно меньших скоростях газов и паров в абсорбционной колонне [10]. К таким примесям относятся ингибиторы коррозии, продукты взаимодействия аминов с неуглеводородными компонентами сырьевого газа, углеводороды конденсата, химические реагенты предыдущих стадий подготовки газа, соли пластовых вод, механические примеси (углеродные дисперсии, окалина и др.). [c.76]

    С. А. Балезиным и др., выяснены многие важные стороны этого явления. Наряду с другими способами защиты металлов ингибиторы коррозии широко используются при химических методах очистки черных металлов от окалины и ржавчины при химической очистке паровых котлов от накипи. Так как замедлители коррозии уменьшают скорость растворения в кислоте самого металла, но не уменьшают скорости растворения ржавчины или накипи, то применение их в этих случаях сильно ослабляет коррозию. Действие ингибиторов коррозии в этих случаях объясняется тем, что они хорошо адсорбируются на поверхности самого металла, но не его солей или окислов. [c.461]

    Тпт ш ПС является жаростойким металлом. Скорость его окисления при высоких температурах довольно высока. Процессы, протекающие при окислении титана, очень сложны. Известно, что чистый титан в атмосфере воздуха или кислорода начинает окисляться с заметной скоростью при температурах выше 50(Г С. При высоких температурах (700 1000" С) окалина пи поверхкостн титаиа пориста и даже склонна к отслаиванию. При окислении титана в воздухе по мере П0 и51шения температуры наблюдается переход от логарифмического к кубическому закону роста иленки, далее параболический, затем линейный и снова параболический закон. [c.143]

    При высокотемпературном окислении железных сплавов, являющихся твердыми растворами железа с легирующими элементами, окисляющимися легче, чем само железо, можно наблюдать обогащение окалины этими элементами, если окисление ие происходит очень быстро. Возможность обогащения окалины в ироцессе ее образования тем или иным легирующим элементом определяется соотношением между скоростями окисления и диффузии. За исключением марганца, все легирующие элементы концентрируются в слое, прилегающем к металлу, что можно объяснить тем, что легируюнгие элементы меиее растворим ) , чем железо, в ок гслах железа. [c.234]

    Второй способ — введение в агрессивную среду веществ, которые могут ири некоторых условиях значительно снизить скорость коррозионного процесса,— находит применение в системах, работающих с постоянным или редко обновляемым об.ъемом раствора в резервуарах, баках, цистернах, травильных ваннах для снятия окалины с иоверхности металла, паросиловых установках ири снятии накипи и др. [c.310]

    С [26]. Диффузия ионов МР наружу происходит по катионным вакансиям в где О < -< 1, а внедрение повышает концентрацию катионных вакансий. В хромоникелевых сплавах, содержащих >40 % Сг, диффузия наружу происходит в окалинах, состоящих из СГаЗд. Внедрение ионов Ni в Сг Зз-окалину снижает концентрацию катионных вакансий, поэтому скорость реакции становится ниже скорости для чистого хрома. При промежуточных составах окалина гетерогенначИ состоит из сульфидов никеля и хрома, причем в сплавах Сг — N1, содержащих >20 % Сг, скорость реакции взаимодействия с серой ниже, чем для чистого хрома. [c.198]

    По рис. 17.4 видно, что избыток щелочи может быть опасен для котла, так как при pH > 13 скорость коррозии резко возрастает. Но эта опасность не столь велика по сравнению со случаем, когда котловая вода вследствие случайного увеличения концентрации щелочи в щелевых зазорах приобретает в этих областях слишком высокие значения pH. Такие зоны могут образовываться между соединенными клепкой листами, в сварных швах, под растрескавшейся окалиной или на горячих участках поверхности трубы, покрытой окалиной. В связи с этим считается целесообразным вводить в воду буферные добавки, такие как Р04 (НазР04), которые препятствуют увеличению pH независимо от того, по какой причине возросла концентрация щелочи. Действие этих ионов оказывается также полезным для предупреждения коррозионного растрескивания под напряжением (КРН) различных элементов котла, которое может происходить при высоких значениях pH под действием остаточного или приложенного напряжения. Минимальное количество ионов РО4 , рекомендуемое для этих целей, колеблется от 30 мг/л при pH = 10,5 до 90 мг/л при pH = 11. Количество добавок определено в работе Перселла и Уэрла [33] и в [33а]. По сообщению Голдштейна и Бертона [28], добавка фосфата в количестве 5—10 мг/л при pH = 9,5ч-Ю,0 более эффективно защищает от коррозии трубы котлов высокого давления при различных условиях эксплуатации, чем обработка воды НаОН или ЫНз. [c.287]

    Маслопроводные трубы — стальные бесшовные — подвергают травлению и тщательной очистке от окалины. Скорость масла в трубах 1,0—1,5 м1сек. [c.470]

    В результате неоднократного применения способа паровоздушного выжига кокса происходит быстрьпТ износ переточных трубопроводов (перетоков). Такой интенсивный износ можно объяснить следующим образом покрытые толстым слоем тепловой изоляции переточ-ные трубы при выжиге кокса нагреваются до очень высокой температуры, так как отсутствует отвод тепла в окружающую атмосферу. При перегреве металл становится мягким, а вследствие больших скоростей движения смеси пара и воздуха с окалиной и частичками кокса наряду с коррозией происходит большой эрозионный износ. [c.201]

    Непровары — это дефекты в виде местного неспланления в сварном соединении из-за неполного расплавления кромок или поверхностей ранее вьшолненных валиков шва. Непровары в виде несплавления основного металла с наплавленным представляют собой тоикую прослойку оксидов, а в некоторых случаях грубую шлаковую прослойку между основным и наплавленным металлом. Причинами образования таких непроваров являются плохая зачистка кромок свариваемых деталей от окалины, ржавчины, краски, шлака, масла и других загрязнений блуждание или отклонение дуги под влиянием магнитных полей, особенно при сварке на постоянном токе применение электродов из легкоплавких материалов (при вьшолнении шва такими электродами жидкий металл натекает на неоплавленные свариваемые кромки) чрезмерная скорость сварки, при которой свариваемые [c.77]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]


Смотреть страницы где упоминается термин Скорость окалины: [c.73]    [c.97]    [c.100]    [c.100]    [c.261]    [c.93]    [c.143]    [c.202]   
Ингибиторы коррозии (1977) -- [ c.201 , c.227 ]




ПОИСК







© 2025 chem21.info Реклама на сайте