Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен спектр ЭПР

Рис. 1.65. ИК спектры ориентированной пленки сульфохлорированного полиэтилена в поляризованном свете. Электрический вектор перпендикулярен (/) и параллелен (2) направлению ориентации. Содержание ЗО С и С1 в полиэтилене 5,8 и 10 % по массе. Пленка получена горячим прессованием [154]. Рис. 1.65. ИК спектры <a href="/info/668227">ориентированной пленки</a> сульфохлорированного полиэтилена в поляризованном свете. <a href="/info/117344">Электрический вектор</a> перпендикулярен (/) и параллелен (2) направлению ориентации. Содержание ЗО С и С1 в полиэтилене 5,8 и 10 % по массе. <a href="/info/862696">Пленка получена</a> горячим прессованием [154].

    При пиролизе в стандартных условиях различные полимеры дают характерные хроматографические спектры продуктов пиролиза (пирограммы). Четко выраженные, характерные пирограммы (для = 650°С и -г=10 с) имеют, например, полистирол (рис. 17.4), полипропилен (рис. 17.5), поливинилхлорид (рис. 17.6),полиэтилен (рис. 17.7) и другие полимеры и сополимеры. Пирограммы большого числа пластмасс также имеют свой характерный вид и заметно отличаются одна от другой. Инертные наполнители, содержащиеся в пластмассах, не искажают пирограмму чистого полимера. [c.245]

    Полиэтилен. Спектр ЭПР, получающийся при длительной механодеструкции полиэтилена (ПЭ) при —196° С, соответствует ради-  [c.413]

    В качестве примера исследуем течение смешиваемых материалов по рабочей поверхности многоступенчатого центробежного (ротационного) смесителя, использование которого весьма перспективно для смешения высокодисперсных твердых (порошковых) материалов с вязкими жидкостями [70]. Так, представляет интерес применение ротационных смесителей в производстве полиэтилена, где перерабатываются большие количества цветных пигментов и сажи, ввод которых в полиэтилен необходим, чтобы придать ему определенные потребительские свойства (различные цвета спектра, термостойкость, диэлектрические свойства и т. д.). [c.188]

    Линейной потерей энергии (ЛПЭ) называют линейную скорость потери энергии частицей или излучением, проходящим через материал. В первом приближении ЛПЭ может быть вычислена простым делением общей потери энергии частицы на длину ее пути. Такое вычисление, однако, весьма неточно, так как потеря энергии меняется при уменьшении скорости частицы, а энергия ионизирующей частицы не поглощается локально, а передается среде с помощью вторичного излучения. Например, энергия 7-излучения и рентгеновского излучения передается в итоге посредством вторичных электронов, которые имеют широкий спектр энергий с разной ЛПЭ. В тех случаях, когда средний потенциал возбуждения известен, можно ЛПЭ вычислить, например, по уравнению (УП.1) или по другим уравнениям, описывающим иные механизмы потери энергии. Значени.ч ЛПЭ увеличиваются в ряду 7-кванты < электроны высоких энергий < рентгеновское излучение малых энергий < р-частицы < тяжелые частицы. Для электронов, проходящих через полиэтилен, ЛПЭ = (980/ )1 (0,2 ) 10- эВ/нм, при Е — 0,25 МэВ ЛПЭ ==2-10 эВ/нм и возрастает до 23-10- эВ/м при Е = 1 кэВ. [c.214]

    К важнейшим полимерам нефтехимического синтеза относятся синтетические каучуки общего и специального назначения, а также полиэтилен, политрифторэтилен, поливинилхлорид, поливиниловый спирт, полистирол, полиэтилентерефталат, находящие широкое применение на практике. ИК-спектры указанных полимеров изучены в диапазоне частот 400—4000 см и установлены спектрально-структур-ные корреляции. По трем полимерам — полиэтилену, поливинилхлориду и полиэтилентерефталату — проведена серия экспериментов по изучению действия ионизирующего излучения на молекулярную структуру полимеров. [c.86]


    В ИК-спектрах полиэтиленов, полученных различными способами, наблюдаются различия, которые являются результатом отклонения структуры полиэтилена от линейной цепи —СН2— (рис. 12.4). На этом основано аналитическое приложение ИК-спектроскопии к определению степени ненасыщенности, концентрации метильных групп и боковых ответвлений в полиэтиленах [c.193]

    Смеси полимеров. Зависимость времени вращательной корреляции спин-зонда от локальной вязкости полимера, зависящей от его химического строения и морфологии, может быть использована для изучения совместимости полимеров в смесях. В работе [208] показано, что в несовместимой системе полиэтилен— полиизобутилен (ПЭ — ПИБ) спектр смеси представляет собой суперпозицию спектров компонентов и может быть разделена на составляющие, исходя из знания спектров зондов в чистых ПЭ и ПИБ в тех же условиях. При этом по интенсивности разделенных спектров может быть определена растворимость радикала в каждом из компонентов. Найдено, что растворимость радикалов типа  [c.288]

    Полиэтилен пропускает лучи всех частей спектра, от инфракрасных [c.767]

    На результаты исследований (спектры), помещенные в приложении 1, в некоторой степени влияет и способ приготовления препарата, выбранный экспериментатором. Не вдаваясь в эту специальную область, следует лишь упомянуть, что солевой состав или металл можно изучать а) в расплавленном виде методом отражения (от поверхности расплава в тигле, см. рис. 1 в приложении I) или пропускания луча через расплав, находящийся в кассете с прозрачными окнами б) таким же способом, но в виде капель, удерживаемых на платиновой сетке в) растворенным в смеси солей, иногда эвтектической, чьи оптические свойства известны г) тем же способом, но в жидком органическом растворителе (сероуглероде, бензине, пиридине) и даже воде д) в виде взвеси порошка в жидкости е) в виде порошка, смешанного с порошком, обладающим известными и удобными оптическими свойствами (например полиэтиленом), и нанесенного на прозрачную пластину ж) в виде порошка, нанесенного на слой парафина з) в виде тонкого слоя, полученного путем испарения летучего растворителя и конденсации на прозрачной пластинке и) в виде тонкого порошка, зажатого между двумя прозрачными пластинками к) в матрице из твердого газа и т. д. [c.82]

    Проще всего ответить на вопрос Из чего Очевидно — из более простых молекул. Из более простых чаще всего означает и из более доступных. Доступные природные источники органических соединений — это ископаемое органическое сырье (нефть, газ, уголь) и живые организмы. Их состав и состав продуктов их переработки в конечном счете и определяют тот спектр соединений, которые могут быть синтезированы на этой основе. Например, общеизвестный современный материал — полиэтилен — смог стать продуктом многотоннажного производства потому, что его синтез проводится полимеризацией этилена — дешевого сырья, продукта переработки природного газа. Огромная область промышленной и лабораторной химии — химия ароматических соединений (полимеров, красителей, лекарственных препаратов, взрывчатых веществ и т. д.) — базируется на том, что фундаментальный общий элемент их структуры (бензольное кольцо) имеется в готовом виде в углеводородах, вьщеляемых в масштабах миллионов тонн при переработке каменного угля и нефти. Вискоза и ацетатное волокно, нитроцеллюлоза и пороха, глюкоза и этиловый спирт — это все продукты, получаемые с помощью химических превращений из полисахаридов, самого распространенного класса органических соединений на Земле. Менее масштабный, но исключительно важный для практических нужд синтез множества лекарственных веществ, таких, как витамины, гормоны или антибиотики, также стал возможным благодаря наличию природных источников первичного сырья, вьщеляемого из различных живых организмов. [c.7]

    Остроумный метод анализа поверхностей красок, лаков, пластиков, металлов или стекол с применением метода прессования таблеток с КВг бьш описан Джонсоном [69, 70]. Порошок КВг используется для абразивного истирания поверхности, при этом удаляется слой образца толщиной 50—100 А. Затем из этого порошка прессуют таблетку и получают вполне хорошие спектры. Если требуется, то обработку можно проводить повторно и последовательно изучать различные слои. Для того чтобы гарантировать воспроизводимость удаления слоев с поверхности, можно использовать шлифовальный станок. Более быстрым истирающим действием обладает бромистый калий, смешанный с обрезками стальной проволоки, которую потом удаляют магнитом. В качестве примеров можно привести определение углеводородов на стекле, фталевого эфира на нержавеющей стали и амидов на полиэтилене. Исследовались также причины адгезионного разрушения лакокрасочных покрытий, Для исследования распределения концентраций по толщине на внутренних поверхностях артерий и вен они подвергались абразивному действию струи порошкообразного КВг [71], [c.94]


    С хлорсульфированным полиэтиленом (ХСПЭ) первичные алифатические амины реагируют уже при комнатной температуре с образованием сульфонамидов [133, 134]. В ИК-спектрах ХСПЭ, после обработки его 10%-ного раствора в толуоле н-бутиламином при 25 °С в течение 24 ч, полностью исчезают полосы поглощения хлорсульфоновых групп и появляются две новые полосы 1315 и 1140 СМ , принадлежащие сульфонамидной группе —ЗОг—Ы<  [c.57]

Рис. 1.134. ИК спектры атактического поли-4-винилпиридина в поляризованном свете. Электрический вектор перпендикулярен (/) и параллелен (2) направлению прокатки. Пластифицированные пленки, содержащие до 5 % амилового спирта, отлиты из раствора в этаноле на полиэтилене и пропущены между нагретыми до 363—373 К валками. Кратность вытяжки 10 [83]. Рис. 1.134. ИК <a href="/info/1127615">спектры атактического</a> поли-4-винилпиридина в поляризованном свете. <a href="/info/117344">Электрический вектор</a> перпендикулярен (/) и параллелен (2) направлению прокатки. Пластифицированные пленки, содержащие до 5 % <a href="/info/7689">амилового спирта</a>, отлиты из раствора в этаноле на полиэтилене и пропущены между нагретыми до 363—373 К валками. Кратность вытяжки 10 [83].
    При помощи инфракрасных спектров было доказано наличие в макромолекуле поливинилхлорида двойных связей, возникших в результате частичного отщепления НС1, и разветвлений (по числу концевых метильных групп в полиэтилене, полученном при восстановлении поливинилхлорида), присутствие остатков эмульгаторов, инициаторов и т..д. Этим же методом было получено подтверждение того, что повторяющаяся структурная единица в этом полимере содержит по крайней мере два мономерных остатка. [c.20]

    Из формул (5.54) и (5.55) следует еще одна интересная закономерность при понижении температуры (прн Т—>-0), когда UT— оо, диэлектрическая проницаемость г определяется лишь параметром ем. Так как значения E o ряда неполярных (полиэтилен, политетрафторэтилен) и полярных (полиамиды) кристаллических полимеров мало отличаются друг от друга, то очевидно, что при очень низких температурах диэлектрическая проницаемость этих полимеров должна быть почти одинаковой. Отсюда следует, что при вымораживании релаксационного спектра путем понижения температуры в значи- [c.199]

    Измерения производились при 80К в специальном пенопластовом криостате. Твердые вещества таблетировали в полиэтилене. Толщина поглотителей природного олова составляла 10—15 мг/см . Параметры ЯГР-спектров определены относительно ЗпОг. [c.27]

    ВЛИЯНИЕ СКОРОСТИ СДВИГА НА РЕЛАКСАЦИОННЫЙ СПЕКТР РАСПЛАВОВ ПОЛИЭТИЛЕНОВ [c.150]

    Он пришел к выводу, что около 75% поперечных связей, образующихся в полидиметилсилоксанах при облучении электронами с энергией 800 кэв, можно приписать структурам I и II. вероятно в отнош енин, примерно равном 2 1 соответственно. Остальные поперечные связи принадлежат к структурам, пока ПС выясненным. Результаты Бюхе представляют особенный интерес, так как это, кажется, единственный случай, когда имеется прямое доказательство характера структуры, образующейся в результате сшивания. В отношении структуры поперечных связей, образующихся в облученном полиэтилене, имеется неопределенность вследствие того, что исследование инфракрасных спектров поглощения не дает на это прямых указаний (стр. 118 и сл.). [c.200]

    Словохотова Н. А., Карпов В. Л., Изучение химических изменений в полимерных веществах под влиянием ионизирующих излучений методом колебательных спектров, II. Действие "(-излучения на полиэтилен, Сб. работ по радиационной химии, Изд. АН СССР, 1955, стр. 206. [c.280]

    Из полимеров этого типа известны полиэтилен (Х = Н) и политетрафторэтилен (X=F), получившие широкое промышленное применение. Банн [43], первым интерпретировавший рентгенограммы волокна полиэтилена, пришел к выводу, что макромолекула имеет форму плоского зигзага. Позднее Хаггинс [101] высказал предположение, что молекула полиэтилена неплоская и слегка закручена в спираль, поскольку атомы водорода отталкиваются друг от друга, хоть и весьма слабо. Однако исследование ИК-спектров кристаллического полиэтилена [102] опровергло это предположение. Дело в том, что плоская молекула имеет более высокую симметрию, чем закрученная в спираль, и потому в ней некоторые полосы поглощения запрещены по симметрии, что и подтверждается экспериментальными данными (заметим, что рентгенограммы еш не дают вполне строгого доказательства планарности ценя). [c.35]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    В литературе сведения о низкочастотных колебательных спектрах изученных нами алканов, по-видимому, отсутствуют. Но имеются данные о спектрах комбинационного рассеяния света и спектрах рассеяния тепловых нейтронов в полиэтилене /64,127,133/. В этих спектрах на бпюдаются (см. табл. УИ.7.2) антипараллельные трансляционные колебания вдоль оси б, 5 ( ) = 118 см , близкие к ним, но не идентифицированные колебания = 104 см 1 и антипаралпель-ные крутильные колебания решетки см 1. [c.170]

    Для интерпретации колебательных спектров полимеров необходимо знать спектральное повторяющееся звено цепи, т. е. такую единицу, из которой определенными операциями симметрии может быть построена вся макромолекула. Иногда такая единица совпадает с мономерным звеном цепи (изотактический полипропилен), в некоторых случаях она содержит два мономерных звена (синдиотактический полипропилен, полиакрилонитрил) либо включает лишь половину мономерного звена (полиэтилен). При анализе спектра следует учитывать, что число характеристических колебаний для данной химической группы будет различно в зависимости от того, принадлежит ли эта группа полимерной или неполимерной молекуле. Например, рассмотрим характеристические колебания группы —СНг—. В неполимерной молекуле СНгСЬ для группы СНг характерны три характеристических колебания два валентных в интервале 2940—2915 см и 2885— 2860 см и одно деформационное колебание в интервале 1480— 1460 см . В полимерной молекуле, содержащей группы СНа, следует ол<идать шесть характеристических колебаний удвоенное число указанных выше трех характеристических колебаний, поляризованных, однако, различным образом — параллельно и перпендикулярно оси цепи. [c.187]

    Высокоупорядоченные структуры, например ориентированные жидкие кристаллы, вызывают ориентацию введенных в них радикалов при этом наблюдается изменение положения линий СТС в спектре ЭПР. В ориентированных полимерах - полиэтилене, полипропилене, натуральном каучуке - этот эффект не наблюдается. Хотя анизотропия вращения возрастает, однако влияние ориентации полимера не настолько велико, чтобы привести к ориентации радикала. Растяжение некристатшизующихся каучуков до 500-600 % не приводит к изменению частот и анизотропии вращения парамагнитного зонда. Ориентация сказывается на молекулярной подвижности эластомеров, если она вызывает процесс кристаллизации. [c.367]

    В зависимости от молекулярной массы полиэтилен может быть мягким воскообразным либо твердым, кристаллическим. В данном опыте образуется достаточно высокомолекулярный продукт, плавящийся при температуре около 130 °С. При комнатной температуре он нерастворим, однако при повышенной температуре (100—150°С) растворяется в алифатических и ароматических углеводородах. Измерение вязкости можно проводить в ксилоле, тетралине или декалине при 135 °С, во избежание окислительной деструкции к полимеру добавляют около 0,2% антиоксиданта — N-фенил-Р-нафтиламина. Полиэтилен легко перерабатывается под давлением. При нагревании полиэтилена между металлическими пластинками до 180—190 °С из него можно получать тонкую пленку см. раздел 2.4.2.1). Полученную пленку охлаждают водой и отделяют от пластин. Пленку можно использовать для регистрации ИК-спектра полимера для определения степени его кристалличности (см. раздел 2.3.6) и степени разветвленности (см. раздел 2.3.9). [c.156]

    Разработано так много способов вьщеления малых составных частей, что здесь будут упомянуты только некоторые. Для вьщеления следовых примесей используются методы хроматографии, экстракции растворителем, кристаллизации и дистилляции. Ранее обсуждалась комбинация ИК-спектроскопии и хроматографии. Бумажная хроматография применяется для разделения биологических веществ для получения ИК-спектра достаточно всего нескольких микрограммов вещества [108]. Широко распространен простой и эффективный метод экстракции растворителем. Например, экстракция из отработанной воды четыреххлористым углеродом позволяет определять 0,1 часть нефти на миллион и 10 частей фенола на миллиард [100]. Силиконовые жидкости, используемые в качестве антивспенивающих добавок в пищевых продуктах, были определены в количестве нескольких частей на миллион экстракцией Sj или другим растворителем [60]. Дробная кристаллизация в сочетании с разностной спектроскопией применялась для определения катехина и сходных примесей в гидрохиноне [9]. Для повседневного контроля за содержанием добавок к полиэтилену проводят их выделение растворителями из измельченного полимера с последующей экстракцией I4 и Sj [104]. [c.275]

    Крамм, Ламонт и Мейер [14] использовали ИК-спектрофотомет-эию для определения содержания гидроксильных групп в окисленном полиэтилене. При этом они проводили спектральный анализ полимера, подвергнутого количественному ацетилированию уксусным ангидридом. Для определения содержания ацетильной группы измеряли поглощение при 8,03 мкм. Соответствующая полоса поглощения обусловлена валентными колебаниями связи С 0 и ти-пична для эфиров уксусной кислоты. Результат определения ацетильной группы принимали за содержание гидроксильной группы. Калибровочные данные для этого метода получали путем спектро фотометрического анализа полимеров в ИК-области содержание гидроксильной группы в полимерах предварительно устанавливали путем их ацетилирования уксусным ангидридом, меченным изотопом " С, и последуюнхего радиохимического анализа. [c.27]

    По интенсивности изменения ИК-спектров и молекулярной массы, по образованию сшитой фракции [15, с. 130] под действием разрядов пленки полиэтилена, полистирола и полиэти-лентерефталата располагаются в том же порядке, как и по интенсивности их термоокислительной или радиационной деструкции в присутствии кислорода. Однако по стойкости к эрозии под действием разрядов эти три полимера располагаются в ином порядке. Наиболее стойким к эрозии (наибольшее значение Тж при Ж < , наименьшая скорость изменения толщины) оказывается полиэтилен, менее стойким — полистирол и еще менее — полиэтилентерефталат. [c.170]

    Вторая группа фактических данных относится к изменениям в инфракрасных спектрах полиэтилена и других углеводородов, подвергнутых действию ионизирующего излучения. Известно, как было указано выше (стр. 110), что в полиэтилене содержится небольшое количество двойных связей. Оказалось, что по мере-облучения [26, 27, 31] ненасыщенность винилиденового и виниль-ного типа уменьшается и исчезает при дозах от 15 до 50 Найденная скорость реакции гораздо выше, чем следовало бы ожидать на основании случайного распределения мест возникновения реакции в макромолекуле. Это показывает, что реакция-протекает преимущественно по двойным связям. В то же время число двойных связей гранс-виниленового типа непрерывно увеличивается с возрастанием дозы, и этот процесс может значительно преобладать над уменьшением начальной ненасыщенно-сти. Такое увеличение числа двойных связей качественно подтверждено результатами опытов по бронированию [26, 27]. По этому методу получаются завышенные результаты отчасти за счет протекания реакции замещения, а частично возможно также вследствие образования ч иниленовых групп, трудно обнаруживаемых по поглощению в инфракрасной области. Доза-50 мегафэр дает поглощение, соответствующее приблизительно-0,0001 моля гранс-виниленовых групп на 1 г полиэтилена, или примерно 1 двойную связь на 360 мономерных единиц. Образование траис-виниленовых двойных связей происходит с одинаковой скоростью как в полиметилене, так и в полиэтилене [26 это указывает, что наличие точек разветвлений несущественно при протекании данной реакции. Аналогичным образом эта-реакция осуществляется в октакозане [26]. Ни в одном случае не наблюдалось образования других видов двойных связей. Из общего количества выделяющегося водорода около 40% образуется за счет возникновения гранс-виниленовых групп, остающаяся часть выделяется за счет процесса сшивания. [c.121]

    Нарушения структуры полиэтилена — длинные и ко1роткие боковые цепи и олефиновая ненасыщенность — встречаются сравнительно редко (доля их не превышает 1—2%), но они сильно влияют на физические свойства полимера. Традиционным методом их определения являлась ИК-спектроскопия [1]. Однако ЯМР-спектроскопия, по-видимому, столь же мощный метод и обладает еще тем преимуществом, что дает возможность находить концентрации непосредственно, не определяя коэффициенты экстинкции. Като и Нисиока [2] показали, что метильные группы (т. е. концы боковых цепей) могут быть обнаружены в полиэтилене низкой плотности с помощью накопления 400 спектров на накопителе САТ (см. разд. 1.18.3). Как и ожидалось, наблюдение этих сигналов значи- [c.143]

    ЯВЛЯЮТСЯ кислородсодержащие группы и имеюп1иеся в полимере в заметном количестве боковые ветви группировки обоих типов были обнаружены в полиэтилене при помоп1и инфракрасных спектров [38]. [c.61]

    Если бы полиэтилен состоял только из линейных цепочек метилено вых групп, его реакционную способность по отношению к кислороду можно было бы легко предсказать, исходя из данных, полученных для низкомолекулярных нормальных парафинов. Одиако установлено, что полиэтилен значительно более реакционноспособен, чем нормальные парафины предполагают, что это связано с присутствием в его цепи аномальных структурных группировок. Анализ инфракрасных спектров показал, что этот полимер содержит карбонильные группы, которые могли образоваться или п результате прямого окисления, или при сополимеризации этилена с небольшими количествами окиси углерода, почти всегда присутствующей в этилене в качестве примеси. Кроме того, концентрация метильных групп в полимере такова, что приходится допускать существование в среднем одной боковой цепи на каждые 50 атомов углерода. Большинство разветвлений образуется в результате присоединения этиленовых звеньев в виде СН - [c.187]

    Облученный полиэтилен изучали многие исследователи [I, 97, 102, 114, 116, 122, 195]. Исследования чаще всего проводили с линейным полимером марлекс 50. Полученный спектр ЭПР показан на рис. 195. При продолжительном хранении при комнатной температуре интенсивность спектра уменьшается и изменяется его характер (например, см. пики 1,2, Зм 6). Основной шестилинейный спектр превращается в спектр с основным расщеплением на пять линий, которые имеют сложную сверхтонкую структуру. По-види- [c.445]

    Спектры кристаллов. Инфракрасный дихроизм. Спектр монокристалла в поляризованном свете зависит от ориентации кристаллографических осей относительно плоскости поляризации падающего пучка лучей. То же относится и к макроскопически ориентированным высокополимерам, которые получают экструзией или растяжением таких полимерных материалов, как нейлон, поливиниловый спирт, полиэтилен. Впервые систематические исследования ИК-ДИхроизма в системах с Н-связью провел Эллис с сотрудниками [604, 779, 780]. В дальнейшем этот метод применяли Манн и Томпсон [1334], Крукс [463], Эмброз, Эллиот и Темпль [595, 38, 589, 4]. [c.104]

Рис. 1.198. ИК спектр полигептаме-тиленоксида. Пленка получена кристаллизацией из расплава. Стрелкой обозначена полоса, обусловленная упаковкой в кристалле, подобной полиэтилену [353]. Рис. 1.198. ИК спектр полигептаме-тиленоксида. <a href="/info/862696">Пленка получена</a> кристаллизацией из расплава. Стрелкой обозначена полоса, обусловленная упаковкой в кристалле, подобной полиэтилену [353].

Смотреть страницы где упоминается термин Полиэтилен спектр ЭПР: [c.5]    [c.194]    [c.195]    [c.581]    [c.7]    [c.43]    [c.46]    [c.15]    [c.163]    [c.569]    [c.441]   
Химические реакции полимеров том 2 (1967) -- [ c.225 ]




ПОИСК





Смотрите так же термины и статьи:

ИК-спектр изолированной цепи и кристалла полиэтилена

Колебательный спектр дейтерированного полиэтилена

Полиэтилен НПВО-спектр

Полиэтилен дейтерированный, спектр

Полиэтилен инфракрасные спектры поглощения

Полиэтилен инфракрасный спектр

Полиэтилен поляризационный спектр

Полиэтилен рамановский спектр

Полиэтилен спектры поглощения

Полиэтилен, спектр инфракрасный литература

Спектр полиэтилена, имеющего бесконечные вытянутые цепи

Спектры полимеров полиэтилена



© 2025 chem21.info Реклама на сайте