Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация кинетическая

    Скорость этой бимолекулярной реакции практически зависит только от концентрации сахара, т. е. является псевдомономолекулярной, идет до конца и описывается кинетическим уравнением первого порядка. Инверсия сахара в нейтральном водном растворе практически не идет. Реакцию ускоряют, добавляя катализатор — сильную кислоту. И тростниковый сахар, и глюкоза, и фруктоза оптически деятельны, поэтому удобно определять изменение концентрации в процессе реакции по изменению оптической активности раствора. Оптическая активность характеризуется удельным вращением [а], равным углу вращения плоскости поляризации при прохождении луча через раствор с толщиной слоя 1 дм и концентрацией 1 г/мл при 20° С. Зная угол вращения, концентрацию и толщину слоя раствора, легко найти [а]. Знаки -f и — отвечают правому и левому вращению соответственно. Тростниковый сахар вращает плоскость поляризации вправо ([а] = 4-66,55°), а смесь продуктов реакции — влево ([а] глюкозы =+52,5°, фруктозы —91,9°). В течение реакции правое вращение падает до нуля, а затем вращение становится отрицательным, так как угол вращения смеси представляет собой алгебраическую сумму углов вращения составляющих веществ. Абсолютная величина отрицательного угла возрастает, приближаясь к предельному значению Соо, отвечающему окончанию реакции. Угол вращения плоскости поляризации а прямо пропорционален толщине слоя I и концентрации активного вещества с, т. е. а=[а]1с. Зная угол вращения, удельное вращение и толщину слоя раствора, вычисляют концентрацию оптического изомера  [c.228]


    Сопоставление полученных экспериментальных данных дает основание считать, что поляризация в растворах фосфатов имеет различную природу в зоне разбавленных растворов скорость анодного процесса определяется диффузией, в зоне более высоких концентраций природа поляризации — кинетическая. [c.166]

    В области больших поляризаций кинетические уравнения для [c.103]

    Зависимость параметров диэлектрических процессов в полимерах от внутри- и межмолекулярных взаимодействий является обновой для изучения структуры сложных полимерных систем —различных композиций блочных полимеров, разбавленных и концентрированных растворов. Для растворов это можно иллюстрировать двумя примерами. Один из них относится к изучению влияния термодинамического качества растворителя и фазового расслоения на параметры дипольной поляризации кинетически гибких макромолекул. Второй демонстрирует отклик параметров дипольной релаксации на появление в растворе упорядоченности в пространственном расположении макроцепей или их боковых привесков. [c.160]

    Для неполярных полимеров аморфных и кристаллических, таких, как полиэтилен, полистирол, политетрафторэтилен, значение е почти целиком определяется деформационной электронной поляризацией кинетических элементов цепи полимера, что обусловливает малую величину и независимость е от частоты / в пределах от О до 10 Гц. С повышением температуры диэлектрическая проницаемость [c.245]

    Метод построения кривых (см. рис. 173), который основан на изучении зависимости плотности тока от потенциала поляризации при разных температурах, называется температурно-кинетическим методом, а кривая этой зависимости — поляризационной кривой. В общем случае она может состоять из нескольких ветвей (рис, 174), причем участки кривой аЬ, сс1 и т. п.) отвечают течению нового электрохимического процесса. Участок кривой Ьс соответствует предельной (максимальной) скорости электрохимического процесса. Повышение скорости процесса (увеличение плотности тока) приводит к возрастанию потенциала, при котором возможен новый электрохимический процесс (ветвь с<1). Плотность тока, прн которой начинается быстрый рост потенциала поляризации, называется предельной плотностью тока и обозначается /,/. В зависимости от характера протекающего процесса электролиз может сопровождаться изменением окраски раствора, [c.404]


    В данной работе необходимо исследовать природу поляризации температурно-кинетическим методом. [c.416]

    Если заторможенности электродной реакции и диффузии соизмеримы, то суммарная скорость электрохимического процесса будет зависеть от обеих этих стадий смешанный диффузионно-кинетический контроль), т. е. поляризация процесса будет смешанной. Этот случай поляризации будет рассмотрен в дальнейшем на широко распространенном примере кислородной деполяризации (см. с. 240). [c.212]

    Эффект увеличения скорости растворения металла наблюдается, если скачок потенциала сосредоточен в ионном двойном слое. Эффект снижения скорости растворения металла (пассивность может наблюдаться, если скачок потенциала приходится на поверхностный слой металла анодная поляризация уменьшает кинетическую энергию поверхностных электронов (поверхностного уровня Ферми), что приводит к усилению их связи с поверхностными положительными ионами металла и, как следствие этого, к уменьшению свободной энергии и адсорбционной способности поверхности металла. [c.311]

    Влияние температуры на электрохимические процессы успешно используется С. В. Горбачевым и его школой как кинетический метод исследования природы поляризации этих процессов. Зная эффективную энергию активации процесса, можно судить о природе стадии, определяющей скорость электрохимического процесса. [c.355]

    Она является функцией тока чем выше плотность тока, тем больше значение поляризации. Если потенциал становится более отрицательным, поляризацию называют катодной, если более положительным — анодной. Возникновение поляризации обусловлено замедлением электродного процесса. Можно считать установленным тот факт, что в основе зависимостей ф —/ и Дф —/ лежат кинетические закономерности, характерные для данной электродной реакции. Методы изучения особенностей поляризационных кривых потенциал — плотность тока называют вольтамперометрией. Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. Скорость многостадийной реакции определяется скоростью наиболее медленной стадии. Это представление справедливо и для электрохимической реакции. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса. Если изменить ход процесса, т. е. увеличить его скорость, то и налагаемое напряжение может уменьшиться и стать меньше обратимого потенциала. Уменьшение электродного потенциала по сравнению с обратимым и процесс, обусловливающий его, называют деполяризацией. Значение поляризационных и деполяризационных явлений при практическом использовании неравновесных электрохимических систем велико. Потенциалы поляризованных электродов определяют напряжение электрохимической цепи, а следовательно, и напряжение на клеммах химического источника тока, т. е. определяют энергетические затраты. Поэтому особенно важен выбор оптимальных условий проведения электрохимического процесса. [c.203]

    Возникновение поляризации обусловлено замедлением в ходе электродного процесса. Поскольку скорость процесса, состоящего из нескольких последовательных стадий, определяется скоростью наиболее медленной (лимитирующей) стадии, то появление поляризации связано непосредственно с этой стадией. Если известна природа лимитирующей стадии, вместо термина поляризация употребляется, как правило, термин перенапряжение . Если наиболее медленной стадией является транспорт реагирующих веществ к электроду или продуктов, образовавшихся в результате электрохимической реакции от него, перенапряжение называется диффузионным (т]д). Когда наиболее медленно протекает стадия разряда или ионизации, возникает электрохимическое перенапряжение, называемое также перенапряжением (электронного) перехода (tin). Торможение в дополнительных стадиях сопровождается возникновением собственно фазового перенапряжения (т1ф) и перенапряжения реакции (г р). Каждый вид перенапряжения обусловлен специфическим механизмом его появления и описывается собственными кинетическими уравнениями. В общем случае электродная поляризация складывается из всех видов перенапряжения  [c.499]

    Однако при конкретных электрохимических процессах доминирующее значение может иметь один из видов перенапряжения, который и определяет поляризацию процесса в целом. Общие законы химической кинетики приложимы к электрохимическим процессам. Однако при этом существует соотношение между скоростью процесса (плотностью тока) и потенциалом (или перенапряжением). Это соотношение выражается или с помощью кинетических уравнений, или графическим путем посредством поляризационных кривых, которые строятся в координатах ф — т — г Ig i — т]. [c.499]

    Одновременно атомы, обладающие повышенной кинетической энергией, могут сесть и на других гранях с более высокими индексами энергии, эти атомы либо вновь растворяются при данной поляризации катода, либо диффундируют к участкам с более низким уровнем энергии и там внедряются в решетку,. п бо формируют пакет зародышей, с которого начинается рост второго кристалла. [c.94]


    Кроме обратимой величины полной энергии разложения, в энергетическом балансе фигурируют кинетические факторы, выражающиеся в процессе электролиза перенапряжением, связанным с катодной и анодной реакцией (поляризация на электродах). В электрическом балансе (14, XII) они выражены величинами Дфа — Дфк- В уравнении теплового баланса (16, XII) они включены в величину греющего напряжения на ванне U. Дополнительное количество энергии, вызванное перенапряжением A nF, превращается в тепловую энергию. [c.599]

    Этот небольшой экскурс в проблему поляризации связей не так уж абстрактен. Дело в том, что поляризованные, частично ионные, связи прочнее ковалентных — если выражать их прочность как энергию теплового распада в вакууме. Однако поляризация (М->Ь или Мч-Ь), как правило, резко повышает их способность к различным реакциям замещения при атаке нуклеофильными или электрофильными агентами или реакциям окисления-восстановления в присутствии влаги или кислорода воздуха. С повышением температуры эта кинетическая Нестабильность термодинамически устойчивых связей возрастает. Основная роль обрамляющих групп как раз и состоит в защите основной цепи от подобной атаки. Это достигается двумя путями стабилизацией электронной структуры (т. е. снижением поляризации главных связей) и непосредственно барьерной функцией , которая наиболее четко выражена у элементорганических полимеров с гидрофобными ароматическими радикалами, [c.20]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    Авторы других работ использовали формулу (1.26), в которую подставляли кинетический ток . Последний находили из измеряемого тока после исправления его на концентрационную поляризацию по уравнению типа (1.27). Однако и с таким расчетом 0 вряд ли можно согласиться. Дело заключается в том, что изменение тока в присутствии органических веществ обусловлено не только уменьшением доли свободной поверхности, но также изменением при адсорбции т1 1-потенциала, величина которого влияет как на поверхностную концентрацию реагирующих частиц (если они заряжены), так и на энергию активации стадии разряда [c.38]

    Для предельных кинетических токов, экспериментально найденные энергии активации которых обычно выше 42 кДж-моль- , температурный коэффициент, как правило, выше 2,5—3% град . Для них же эффективная энергия активации плавно снижается с ростом поляризации электрода, тогда как в случае замедленной диффузии не зависит от нее. [c.76]

    Катионы шелочных и щелочноземельных металлов координируют (связывают) молекулы воды в гидраты преимущественно посредством электростатического ион-дипольного взаимодействия. Последнее зависит от заряда и радиуса катиона, его массы и магнитного момента, дипольного момента воды, поляризации иона и воды и от кинетических параметров (импульс, момент количества движения и др.). Между катионами переходных металлов и молекулами воды возникает, благодаря наличию вакантных атомных орбиталей у катионов и неподеленных пар электронов молекулы воды, донорно-акцепторная связь. Часто электростатический и донорно-акцепторный вид связи в гидрате катиона проявляется совместно. [c.414]

    В соответствии с конкретизацией требований к обратимому электроду можно сделать несколько дополнений к сведениям, изложенным в разд. IX. 6—IX. 8. У электродов 1-го рода, кроме названных причин, ответственных за поляризацию (замедленность стадий переноса в растворе или собственно электрохимической стадии), может возникнуть еще одна — замедленное образование зародышей кристаллизации на металлах. Например, для реакции Ад + е —> Ад значение Д вблизи равновесных потенциалов серебряного электрода определяется замедленностью стадии кристаллизации. При работе с металлическими электродами и в кинетических, и в потенциометрических опытах [c.545]

    Важной характеристикой сольватации является энергия взаимодействия ионов с молекулами растворителя, составляющими в растворе непосредственное окружение ионов, и с более отдаленными молекулами. Соответственно этому различают ближнюю и дальнюю сольватацию. С ближней связаны кинетические и термодинамические свойства растворов. Дальняя сольватация проявляется главным образом в поляризации молекул растворителя под влиянием кулоновских сил, действующих между ионами. Состояние ионов в растворах и молекулярный механизм протекающих в них процессов связаны с ближней сольватацией. [c.271]

    Приведенных примеров (поляризация при электродиализе, обратном осмосе, эффект релаксации в электрофорезе и др.) достаточно для следующего утверждения кинетические процессы, протекающие в зонах ДЭС, неизбежно сами влияют на структуру п свойства ДЭС (обратная связь), изменяя ее, и рассмотренный выше классический режим электроповерхностных явлений должен быть дополнен представлениями о поляризационном режиме, ибо этими, более общими представлениями в настоящее время во многих случаях нельзя пренебречь. [c.219]

    Наметим теперь основные черты рассмотрения задачи полярона. Полный гамильтониан системы состоит из трех частей собственной энергии Носп диэлектрика, связанной с колебаниями среды энергии взаимодействия электрона с полем поляризации кинетической энергии электрона т. е. [c.144]

    Теоретический анализ возможных форм движения гибкоцепных молекул в электрическом поле [53] приводит к заключению [54] о возможности ориентационного механизма поляризации кинетически гибкоцепного полимера в тех случаях, когда его мономерные звенья имеют составляюш,ую диполя, параллельную основной цепи и жестко с нею связанную. Соответ-ствуюд] ие времена релаксации также должны быть пропорциональными М [ц], однако вдвое большими для диэлектрической релаксации, нежели для эффекта Керра. [c.147]

    В результате электрохимического акта образуется адсорбированный катодом атомарный водород. При заданной плотности тока доля поверхности электрода, занятая атомами водорода, составляет некоторую величину 0 н. Если поляризация электрода обусловлена только замедленностью электрохимической стадии, то все остальные стадии, в том числе и удаление адсорбированного водорода, совершаются с несравненно большими скоростями, чем перенос заряда, и, следовательно, заполнение при данном токе должно быть равно (или почти равно) заполнению 0н в отсутствие результативного тока, т. е. при равновесном потенциале водородного электрода 0 н = 0н- Степень заполнения поверхности электрода адсорбированным атомарным водородом в условиях его катодного выделения определяется в первую очередь природой металла и для данного металла зависит от потенциала электрода. Она ничтожно мала (0 = 0) на Нд, РЬ, Сс1 и на других мягких или ртутеподобиых металлах. В согласии с этим выделение водорода по реакциям (17.78) и (17.79) может происходить несколькими путями и, соответственно, описываться различными кинетическими уравнениями. [c.361]

    К числу физических измерений, часто используемых при кинетических исследованиях, относятся оптические измерения, например вращения плоскости поляризации света раствором (при условии, что реагенты и продукты обладают различной способностью вращать эту плоскость), изменения показателя преломления раствора, его окраски или спектра поглощения. Наиболее распространенные электрические методы включают измерения электропроводности раствора (что особенно удобно, если реакция сопровождается образованием или поглощением ионов), измерения напря- [c.359]

    Поляризация ионов. Отклонение. от чисто ионной связи можно рассматривать как результат электростатического воздей- ствия ионов друг на друга, считая их деформируемыми системами, состоящими из положительных (ядра) и отрицательных (электро--ны) зарядов. При этом не учитывают изменение кинетической энергии электронов и их волновые свойства, определяемые зако номерностями квантовой механики. Такой подход к рассмотрению ионной связи интенсивно разрабатывался в 20-30 годы, и хотя он является очень приближенным, однако часто приводит к качественно правильным выводам н до сих пор полезен. Поэтому мы кратко его разберем. [c.111]

    Уравнения 1УП.4.21), 1УП.4.25), напротив, являются строгим следствием термодинамической теории релаксационных процессов. Параметры этих уравнений (времена релаксации, релаксационные силы) связаны как со строением жидких систем, свойствами составляющих их молекул 1концеттрации ассоциатов, дипольные момшты), так и с кинетическими характеристиками процессов перестройки ее структуры (константы скоростей молекулярных процессов). Приметеяие соотношений 1УП.4.21), (УП.4.25) при расшифровке диэлектрических спектров открывает широкие возможности для понимания молекулярных механизмов дипольной поляризации жидких систем /1,41/. ( [c.124]

    В интервале температур от 5 до 30° С наблюдается кинетический переход, который практически полностью исчезает после длительной сушки образцов в вакууме в течение 8—10 ч при 120— 140° С. С повышением частоты внешнего электрического пoляtg бmax смещается в сторону более высоких температур. Это позволяет связать данный кинетический переход с поляризацией молекул сорбированной полимером воды. Кинетический переход в интервале температур 40—100° С обусловлен размораживанием подвижности связанной воды и разрывом водородных связей. Он также исчезает после прогрева полимеров в вакууме при 120—140° С. В области высоких температур (230—250° С) реализуется релаксационный процесс, предшествующий сегментальной подвижности исследуемых полиарилатов (см. рис. 7.6, а, б). [c.188]

    Поляризация ионов. Ионная связь возникает между атомами элементов с сильно различаюшейся электроотрицательностью, которые в результате электронных переходов превращаются в противоположно заряженные ионы (см. разд. 2.4). Отклонение от чисто ионной связи можно рассматривать как результат электростатического воздействия ионов друг на друга, считая их деформируемыми системами, состоящими из положительных (ядра) и отрицательных (электроны) зарядов. Б этой электростатической модели ионной связи не учитывается изменение кинетической энергии электронов и их волновые свойства, определяемые закономерностями квантовой механики. Такой подход к рассмотрению ионной связи интенсивно разрабатывался в 20-30 годы, и хотя он является очень приближенным, однако часто приводит к качественно правильным выводам и до сих пор полезен. Кратко рассмотрим основные положения электростатического подхода к объяснению ионной связи. [c.118]

    Достаточно указать, что она определяет равновесие и скорость растворения твердых и жидких веществ, разнообразных химических превращений в растворах и.т. д. Сольватация приводит, с одной стороны, к изменению природы реагирующих частиц (образованию сольватокомплексов, перераспределению ионного заряда, поляризации, блокированию реакционных центров и т. п.), с другой — структуры растворителя и его свойств. Своеобразно проявление сольватации в явлениях химической кинетики. Здесь сольватация исходных веществ, переходного комплекса и продуктов реакции определяет не только скорости и другие кинетические параметры рва кций, но также и их механизмы. Следует отметить, что учет и детальный анализ сольватационного взаимодействия растворителя с переходным комплексом необходим для построения теории реакционной способности молекул и ионов. Так, например, издавна считается, что полярный растворитель благоприятствует протеканию химических реакций, переходный комплекс которых более полярен, чем исходное состояние реагентов. [c.237]

    Перенапряжение имеет кинетическую природу. Оно связано с отношением скоростей процессов, протекающих на электроде. Допустим, что с поверхности электрода уходит в раствор в единицу времени п ионов, но столько же возвращается из раствора обратно. Значение электродного потенциала, отвечающее такому равновесному состоянию, вычисляется по формуле Нернста. Но поскольку оба противоположных процесса идут с одинаковой скоростью, то суммарного тока нет электрод не растворяется и вещество выделить из раствора нельзя. Чтобы дать возможность одному из этих процессов преобладать над другим, необходимо изменить значение электродного потенциала по сравнению с теоретическим, или, иначе, поляризовать электрод в ту или другую сторону. Эта дополнительная поляризация и получила название перенапряжения. Очевидно, что без перенапряжения на катоде и на аноде невозможно прохождение тока через электролит. В большинстве случаев перенапряжение на катоде имеет большее значение для электрохимического процесса, чем на аноде. Ответ на вопрос, почему в одних случаях перенапряжение велико, а в других мало, дается в литературе по электрохимии (Л. И. Антропов, В. В. Скорчелетти). [c.159]

    Настоящая работа —пример использования физико-химического метода анализа — поляриметрии — в кинетическом исследовании. Угол вращения определяют с помощью поляриметра (рис. XIII. 14,а). Основные узлы прибора поляризатор 3, состоящий из двух поляризационных призм 3 и 3", и анализатор 5. Монохроматический пучок света, проходя через поляризатор, становится линейно-поляризованным. Маленькая призма 3", закрывающая половину оптического поля, установлена по отношению к призме 3 так, что плоскости поляризации света в двух половинах светового пучка образуют небольшой угол. Анализатор 5, представляющий собой тоже поляризационную призму, вращается вокруг оптической оси прибора. Если анализатор повернут так, что плоскость поляризации света, входящего в него, перпендикулярна к плоскости поляризации выходящего света, то свет через анализатор не пройдет. Соответствующая половина поля, наблюдаемого в окуляр 6, будет темной, а другая —светлой (рис. XIII. 14,б). Между двумя положениями анализатора, отвечающим затемнению одной из [c.794]


Смотреть страницы где упоминается термин Поляризация кинетическая: [c.119]    [c.57]    [c.404]    [c.519]    [c.255]    [c.236]    [c.12]    [c.459]    [c.63]    [c.199]   
Основы современного электрохимического анализа (2003) -- [ c.135 ]

Основы аналитической химии Часть 2 Изд.2 (2002) -- [ c.129 ]

Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.5 , c.9 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость пиков от кинетических параметров переноса электронов и условий поляризации

Кинетические уравнения, описывающие релаксацию распределения плазменных колебаний и юлаксацшо распределений частиц, обусловленную ваанмодействием с слазв меннымк колебаниями Квантовый интеграл столкновений заряженных частиц, учитывающий динамическую поляризацию

Температурно-кинетический метод определения природы электродной поляризации

Электрод кинетическая поляризация



© 2025 chem21.info Реклама на сайте