Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы электронные конфигурации

    Электронная конфигурация инертных газов (электронный октет) энергетически предпочтительна для большинства легких элементов. Не все элементы могут достичь такой конфигурации за счет прямого переноса электронов. Для [c.158]

    Неметаллические свойства элемента выражены тем сильнее, чем легче его атомы принимают электроны. Связь электрона с ядром определяется средним расстоянием электрона на данной орбитали от ядра и эффективным зарядом ядра. Последний зависит прежде всего от степени экранирования заряда ядра внутренними электронами, а также от перекрывания орбита-лей внутренних и внешних электронов. Поэтому неметаллы занимают правую верхнюю часть периодической системы элементов. Легко также понять, что в соединениях одного и того же элемента его неметаллические свойства усиливаются с ростом положительного заряда иона. Неметаллы отличаются еще и тем, что у их атомов заселенность валентных орбиталей близка к максимально возможной согласно принципу Паули. Поэтому атомы неметаллов проявляют тенденцию путем присоединения электронов приобретать электронную конфигурацию ближайшего инертного газа. Неметаллы называют также электроотрицательными элементами. [c.459]


    Состояние электронов в атоме иногда записывают сокраш,енно путем перечисления символов орбиталей в порядке возрастания главного квантового числа и указания с помощью правого верхнего индекса количества электронов в данном орбитальном состоянии. Например, 1з 2з В 15 2з 2р. Такую запись называют электронной конфигурацией элемента. Часто подобные записи сокращают, включая электронную конфигурацию предшествующего рассматриваемому элементу инертного газа, которая записывается в виде его символа, заключенного в квадратные скобки Ь1[Не]25 ВШе]2з 2р. Следует отметить, что две формы представления электронных состояний атомов — энергетические диаграммы и электронные конфигурации — неэквивалентны. Энергетическая диаграмма дает более детальную информацию, чем электронная конфигурация. Так, уже при переходе к следующему элементу — углероду, атом которого имеет 6 электронов, электронной конфигурации основного состояния 5 25 2р могут соответствовать различные электронные состояния, изображаемые энергетическими диаграммами  [c.41]

    Энергия, необходимая для отрыва одного электрона от атома, называется первым потенциалом ионизации. Если атом имеет несколько электронов, то он соответственно характеризуется несколькими потенциалами ионизации — вторым потенциалом, т. е. энергией, необходимой для отрыва второго электрона от однозарядного иона, третьим — энергией, необходимой для отрыва электрона от двухзарядного иона, и т.д. Каждый последующий потенциал всегда больше предыдущего, так как по мере увеличения положительного заряда атомного остова он все более прочно удерживает остающиеся электроны в результате усиления кулоновского притяжения. Например, для алюминия первые три потенциала ионизации равны соответственно 6,0 18,8 и 28,4 эВ. Зависимость первых потенциалов ионизации от положения элемента в периодической системе приведена на рис. 13. Видно, что наблюдается отчетливая периодичность в изменении потенциалов ионизации, причем максимумы соответствуют инертным газам, имеющим заполненные электронные оболочки, а минимум — щелочным металлам, имеющим единственный электрон вне конфигурации инертного газа. [c.48]

    Электронная конфигурация ns np дает возможность элементам этой группы проявлять степени окисления —И, +11, +IV и +VI. Так как до образования конфигурации инертного газа не достает всего двух электронов, то степень окисления —II возникает очень легко. Это особенно характерно для легких элементов группы. Действительно, кислород отличается от всех элементов группы легкостью, с которой его атом приобретает два электрона, образуя двухзарядный отрицательный ион. За исключением необычных отрицательных степеней окисления кислорода в перекисях (—1), надперекисях (—Va) и озонидах (7з), соединениях, в которых есть связи кислород — кислород, а также состояний + 1 и -+II в соединениях O. Fa и ОРз кислород во всех соединениях имеет степень окисления —И. Для остальных элементов группы отрицательная степень окисления становится постепенно менее устойчивой, а положительные — более устойчивыми. У тяжелых элементов преобладают низшие положительные степени окисления. [c.130]


    Химические свойства первого члена I группы (щелочных) элементов лития уже были описаны ранее (гл. 8) во многом он является прототипом других членов I группы, хотя и имеет характерные особенности, обусловленные небольшой величиной атомного и ионного радиусов. Из всех элементов Ма, К, КЬ и Сз имеют простейшие химические свойства, так как их атомы обладают единственным 5-электроном сверх конфигурации инертных газов. Электронные конфигурации, потенциалы ионизации и окислительно-восстановительные потенциалы приведены в табл. 16.1. [c.259]

    Как и потенциал ионизации, сродство атома к электрону определяется его электронной конфигурацией. Галогены имеют самое высокое сродство к электрону, так как при присоединении одного электрона к их атому он приобретает законченную электронную конфигурацию инертного газа. Следует отметить, что прямое определение сродства к электрону из-за больших экспериментальных трудностей сделано лишь для небольшого числа элементов, например галогенов. Большинство значений получено путем соответствующих расчетов. Значения сродства к электрону (эВ) для некоторых атомов приведены ниже  [c.55]

    С точки зрения строения атомов инертные газы характеризуются тем, что в их внешних оболочках все s- и р-уровни заняты электронами. Под такой заполненной оболочкой понимают энергетический уровень атома, в котором все возможные квантовые состояния заняты электронами. Поскольку в силу принципа Паули на s-уровне не может быть больше двух, а нар-уровне больше шести электронов, то внешние оболочки инертных газов имеют конфигурации ns np , кроме гелия, в атоме которого ввиду того, что нри ге=1 1 = 0, имеется всего лишь два s-электрона и нет р-электронов. [c.146]

    Октетная теория исходит из признания, что электронная конфигурация становится исключительно устойчивой, когда ее наружный слой состоит из 8 электронов (октет) или же когда роль наружного слоя выполняет заполненная Л -оболочка Доказательством этого служит существование такой конфигурации у атомов инертных газов (группа 0), отличающихся исключительной химической пассивностью. Чтобы добавить к атому инертного газа электрон или же чтобы удалить с него электрон, необходимо затратить необычайно большое количество энергии. Атомы инертных газов не образуют устойчивых ионов. Атомы элементов всех других групп активны, хотя и в очень различной степени. Ни один из них не имеет конфигурации, характерной для инертного газа. [c.48]

    Сиджвик допустил, что можно провести параллель между образованием устойчивого октета электронов у огромного количества простых соединений, устойчивой конфигурацией электронов, возникающей в результате комплексообразования у центрального иона комплекса, и числом электронов в электронной оболочке инертного газа. Эта гипотеза Сиджвика основывалась на предположении, что существуют не только обычные ковалентные связи, оба связевых электрона которых первоначально находятся у двух различных атомов, но и донорно-акцептор-н ы е, где оба связевых электрона до взаимодействия принадлежат одному и тому же атому —донору электронной пары. Связи такого типа возникают в ионе На внешней оболочке атома [c.246]

    Таким образом, поверхность чистой графитированной термической сажи в основном плоская и химически инертная. Наличие подвижных электронов, способных перемещаться вдоль графитовых слоев, не делает эту поверхность специфичной в отношении межмолекулярных взаимодействий при адсорбции. Вместе с тем изучение адсорбции на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов адсорбата, в частности атомов углерода в углеводородах разных классов. Этого пока не удается сделать при изучении объемных свойств углеводородов (например, сжимаемости газов или энергии решетки молекулярных кристаллов), так как здесь большой вклад в межмолекулярное взаимодействие вносят атомы водорода соседних молекул углеводородов. В случае же адсорбции при малых заполнениях чистой поверхности ГТС таких взаимодействий нет, поэтому оказывается возможным выявить влияние на адсорбцию электронной конфигурации атомов углерода в углеводородах. [c.17]

    Обычные степени окисления для этих элементов легко предсказать на основании их электронной конфигурации. При образовании молекул или ионов атомы будут всегда стремиться к устойчивой группировке во внешней оболочке. Такой устойчивой группировкой будет конфигурация атома инертного газа с двумя (15 ) или восемью (пз пр ) электронами, внешняя конфигурация атома элемента группы никеля с 18 электронами (пз пр пд. ) и внешняя конфигурация атома элемента подгруппы цинка с 18 + 2 электронами [ п — Затем атом может терять спаренные электроны или обобщать электроны парами, поэтому, когда в группе типичных элементов возможны несколько степеней окисления, они отличаются на две единицы. Эти общие закономерности следует иметь в виду при рассмотрении элементов. [c.127]


    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]

    Внешняя электронная конфигурация допускает для членов этой группы только степень окисления +1. Ионы, имеющие конфигурацию инертного газа, образуются легко вследствие слабой связи одного валентного электрона. Как видно из табл. 4-7, именно для элементов этой группы самый низкий ионизационный. потенциал. [c.127]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]

    Классификация по электронной конфигурации рассматривае мого иона или атома металла. В соответствии с этой классификацией все комплексы металлов делятся на четыре категории. Категория I. Эта категория включает ионы металла, которые б своих комплексах имеют конфигурацию инертного газа, т. е. Ь или пз пр (где п равно 2, 3, 4, 5 или 6). Все эти ионы имеют сферическую симметрию. Сюда могут быть также отнесены оба ряда внутренних переходных элементов, лантаноиды и актиноиды в состоянии окисления +П1, так как незаполненный 4/- или 5/-электронный подуровень находится значительно глубже по сравнению с валентными электронами и оказывает на природу связи относительно небольшое влияние. Римскими цифрами [c.242]

    Зависимость значений первых потенциалов ионизации от положения элемента в периодической системе приведена на рис. 13. Видно, что наблюдается отчетливая периодичность в их изменении, причем максимумы соответствуют инертным газам, атомы которых имеют заполненные электронные оболочки, а минимумы — атомам щелочных металлов, имеющим единственный электрон вне конфигурации инертного газа. [c.54]

    К одной группе периодической системы всегда принадлежат те элементы, атомы которых в наружных оболочках содержат одинаковое число электронов. Так, атомы всех инертных газов, кроме гелия, содержат по 8 электронов в наружной оболочке и труднее всех ионизируются, между тем как атомы щелочных металлов содержат по одному электрону в наружной оболочке и обладают наиболее низким ионизационным потенциалом. Щелочные металлы только с одним электроном во внешней оболочке могут легко его терять, переходя в устойчивую форму положительного иона с электронной конфигурацией, подобной ближайшему инертному газу с меньшим порядковым номером. Наоборот, такие элементы, как фтор, хлор и др., приобретают конфигурацию инертных газов путем присоединения электронов, переходя при зтом в соответствующий отрицательный ион. [c.18]

    Рассмотрим, например, образование молекулы водорода Нг, где рассуждения об электрическом притяжении, казалось бы, явно неприменимы. Образование устойчивой электронной конфигурации в данном случае происходит путем обобществления электронов. Такое объяснение образования химической связн за счет взаимодействия электронов впервые было предложено американским физико-химиком Дж. Льюисом. Согласно Льюису, каждый, из двух атомов, вступающих в химическую связь, предоставляет в общее владение по одному электрону так, что пара электронов принадлежит одновременно двум атомам. При этом атомы стремятся достроить свои электронные оболочки до конфигурации инертного газа. [c.77]

    Но атомы водорода способны не только отдавать, но и присоединять электрон, приобретая при этом электронную конфигурацию инертного газа гелия  [c.283]

    В виде таких ионов Н водород находится в гидридах (соединениях с металлами). Способность водорода вступать в реакцию по схеме (3) в определенной степени аналогична способности галогенов присоединять электроны, приобретающих при этом также конфигурацию инертных газов  [c.283]

    Ионная связь образуется между заряженными атомами или группами атомов (комплексными ионами). Она относится к одному из четырех основных типов связи, который можно удовлетворительно описать в классических (неквантовомеханических) терминах. Одноатомные ионы, образованные легкими элементами подгрупп А, и такие ионы, как О - и т. д., Р и т. д., обладают конфигурациями инертного газа. Однако конфигурации многих переходных металлов и ионов, содержащих по два 5-электрона (например, Т1+ и РЬ +), имеют менее симметричное строение. Здесь не будут рассматриваться многочисленные менее устойчивые ноны, существующие в газовой фазе. [c.372]

    Существование очень небольших агрегатов металлических атомов строго доказано в так называемых кластерных соединениях. Эти соединения, а также обсуждаемые ниже данные подробно рассмотрены в обзорах [57—59]. Почти все кластерные соединения, содержащие не более четырех металлических атомов, имеют для каждого атома металла 18-электроиную конфигурацию инертного газа. Электронное строение октаэдрических кластеров менее понятно. Координационное число (к. ч.) атомов металла в кластере часто аналогично к. ч. того же самого атома металла в других соединениях при одинаковой степени окисления. Однако в некоторых случаях к. ч. атома металла в кластере необычно велико, как, например, в (С5Н5реСО)4. Эту тенденцию можно согласовать с относительно небольшим телесным углом координационной сферы металлического атома в кластере, приходящимся на связь металл—металл, так как относительно большая часть координационной сферы предоставлена для связывания других лигандов. Здесь, очевидно, возможна аналогия с поведением угловых атомов в небольших кристаллитах. [c.276]

    В кристаллах типа s l или Na l ионы имеют электронную конфигурацию инертных газов электронные плотности локализованы и их деформации малы (гл. 3, 6). В то же время равновесие между ионами определяется кулоновскими силами и экспоненциальными силами отталкивания, вследствие чего механическая ангармоничность должна быть существенной. В кристаллах же типа ZnS обратная картина вследствие частично ковалентной структуры распределение зарядов сильно зависит от движения ядер, тогда как эффекты механической ангармоничности должны сказываться слабее. [c.323]

    В 1916 г. Коссель, изучая вопрос об образовании различных соединений, обратил внимание на то, что при взаимодействии галогенов и щелочных металлов атомы первых превращаются в отрицательна заряженные ионы с электронной оболочкой инертного газа, а атомы вторых превращаются в положительно заряженные ионы также с нейтронной оболочкой инертного газа. Аналогичные идеи в 1916 г. лсказал Г. И. Льюис. Он ввел в химию гфедставление о том, что в Неполярных соединениях связь между атомами осуществляется парой Т лектронов. По Льюису, пара электронов принадлежит обоим взаимо-"К действующим атомам и участвует в образовании устойчивой электрон-,1 ой конфигурации каждого атома. Такая связь названа ковалентной. Идеи Льюиса, Косселя, а также Лэнгмюра об образовании молекул из атомов путем потери или приобретения электронов и построения внешней оболочки из восьми электронов (октет), подобно тому как у инертных газов (такая конфигурация электронов весьма стабильна), получили распространение. В атоме гелия и молекуле водорода стабильна конфигурация из двух электронов. Однако электронная теория не давала ответа на главный вопрос почему октет электронов наиболее устойчив, а ковалентная связь образуется за счет пары электронов  [c.17]

    Далее оказывается, что сами элементы редких земель внутри себя подразделяются на два маленьких периода по 7 элементов, причём элемент гадолиний (0(1) становится водоразделом всего семейства кроме него, наиболее устойчивыми конфигурациями электронных оболочек обладают два крайних элемента таким путём образуется маленькая группа из трёх элементов Ьа (достройка -подгруппы не начата), 0(1 (достройка доведена до половины) и Ьи (достро1ша закончена). Ионы этих трёх металлов бесцветны, тогда как у остальных они обычно окрашены. Как в большо11> системе элементов соседние с инертными газами металлы и неметаллы стремятся образовывать ионы, подобные инертным газам по конфигурации своей электронной оболочки, так нечто похожее имеется и у редких земель по отношению к ионам Ьа++ +, С(1+ + +и Ьи+ + + отсюда известная периодичность в изменении их валентности. Таким образом, получается нечто вроде маленькой периодической системы (из двух строчек, не считая Ьа) внутри единой системы элементов 2. [c.179]

    Кйк видно из схемы рис. Х1-46, отклойёние от трехваЛентного состояния xapaкte()Ho для лантанидов, группирующихся около трех элементов — La, Од и Ьи. Это обстоятельство указывает на особую устойчйвость электронных структур ионов Э + не только La (2, 8, 18, 18, 8) и Ьи (2, 8, 18, 32, 8), но и стоящего на половине расстояния между ними Сё (2. 8, 18, 25, 8), у которого каждая из семи квантовых ячеек слоя 4/ заполнена одним электроном. Ионы трех перечисленных элементов могли бы с этой точки зрения рассматриваться как своего рода инертные газы>, к конфигурации которых стремятся приблизиться путем отдачи - или присоединения электронов соседние с ними элементы (ср. рис. 111-34). [c.246]

    Основываясь на химических свойствах веществ и на ранней атомной теории прежде различали два типа химических связей — ионную и ковалентную, а стабильность или инертность веществ ставили в зависимость от заполнения оболочек электронной конфигурации инертных газов (ns ns np , п — 1) d ns np и т. д.). Позднейшими исследованиями было найдено, что мера стабильности связана также с полузаполненными или заполненными подоболочками электронов (например, rtd , nd ). [c.20]

    Лампа с полым катодом представляет собой герметичный стеклянный баллон с впаянными в него катодом и анодом, а также окном для выхода излучения. Баллон заполнен инертным газом (аргоном или неоном) до давления в несколько гектопаскалей. Катод, в форме цилиндра или стакана, изготовлен из чистого металла или сплава, содержащего требуемый элемент. При подаче на электроды напряжения порядка 300 В в лампе возникает слаботочный тлеющий разряд, причем при соответствующем выборе давления газа и конфигурации катода этот разряд локализуется в основном внутри катодной полости. Ионы аргона или неона, бомбардируя поверхность катода, распыляют его, и атомы возбуждаются в газовом разряде посредством столкновений с электронами и ионами. В результате лампа излучает эмиссионный спектр нужного элемента. [c.154]

    Жесткие кислоты. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протон, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Недеформируемой электронной оболочкой обладают также катионы с электронной конфигурацией инертного газа, такие как Са +, АР+, Т1 +, в которых электрические и магнитные моменты всех электронов полностью скомпенсированы. Эти катионы образованы в основном элементами главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятой d-oбoлoчкoй, например Мп + и Ре +. Способность к присоединению оснований возрастает по мере увеличения ионного потенциала. Кроме того, к жестким [c.396]

    ГАЛОГЕНЫ (галоиды) — химические элементы главной подгруппы VII группы периодической системы элементов Д. И. Менделеева фтор F, хлор С1, бром Вг, иод I и астат At. Название галогены происходит от греч. hais — соль и genes — рождать. Неправильное название галоиды , которое ввел Г. И. Гесс, означает солеподобный . Атомы Г. имеют конфигурацию валентных электронов присоединяя один электрон, приобретают конфигурацию инертного газа s p . Все Г.— активные неметаллы, непосредственно соединяются с большинством элементов, образуя галогениды. Г.— энергичные окислители, их окислительная способность падает от F к I. Г. в соединениях с электроположительными элементами проявляют степень окисления— 1. С увеличением порядкового номера химическая активность Г. уменьшается, химическгя активность ненов Р , С1 , Вг , 1 увеличивается. С водородом все Г. образуют галогеноводороды — прн обычных условиях газы, из которых по свойствам значительно выделяется НР. Все галогеноводороды хорошо растворяются в воде, образуя сильные кислоты. Кислородные соединения Г. неустойчивы (кроме оксидов I), часто разлагаются со взрывом. Г. и их соединения имеют большое практическое значение в промышленности, в лабораторной практике и в быту. [c.65]

    Исходя из электронной конфигурации, можно различать четыре класса элементов инертные газы, типичные элементы, переходные элементы и внутрирядные переходные элементы. Эта классификация основывается на том, в какой степени заполнены подуровни 3, р, (1 и /, т. е. на том, заполнены или нет те или иные орбитали. При заполненном подуровне следует обратить внимание на числа электронов в различных уровнях (слоях) у данного атома и числа электронов в соответствующих уровнях у атома предыдущего по порядковому номеру или ближайшего следующего инертного газа. [c.103]

    У этого класса элементов все уровни, кроме внешнего, заполнены-Сюда относятся элементы, атомы которых во внешнем слое имеют от до /гз пр -электронов. В этом классе, если строго придерживаться указанного выше электронного распределения, будет 44 члена, включая элементы подгрупп меди и цинка. Некоторые авторы предпочитают относить последние шесть элементов к переходным вследствие сходства их по химическим и физическим свойствам с переходными элементами. За это говорят некоторые веские аргументы, особенно, если принять во внимание химию элементов подгруппы меди в их высшей степени окисления. Химические свойства элементов этого класса в большой степени определяются стремлением их атомов получить, отдать или обобщить электроны таким образом, чтобы приобрести электронную конфигурацию инертного газа с большим или меньшим порядковым номером или так называемую конфигурацию псевдоинертного газа п — К этому классу относятся многие металлы и [c.104]

    Рассмотрим сперва атом. Из 5-, р- и -электронов наименее проникающие — г/-электроны вероятность найти их поблизости от ядра мала и их вкладом в eQq можно пренебречь. Наиболее проникающие 1-электроны не вносят никакого вклада, так как их электронная плотность сферически симметрична относительно ядра и благодаря этому q = (д V) /(<)2 )=0. Заполненная оболочка р -электронов, так же как и наполовину заполненная Рх Ру Р -оболочка, обладает сферической симметрией, и ее вклад в eQq равен нулю. Поэтому для иона со сферической оболочкой инертного газа величина eQq также должна быть равна нулю. Существенным оказывается лищь вклад р-электронов на незаполненных оболочках (исключая р1 Ру р1 -конфигурации). [c.135]

    В качестве примера образования ионного соединения рассмотрим образование молекулы Na l в газовой фазе. Электронные конфигурации атомов натрия Is 2s 2/) 35 и хлора Is 2s 2/ 3s Зр показывают, что они легко могут быть превращены в оболочки инертных газов неона Is 2s 2р и аргона 2s 2р 3s Зр соответственно, при переходе одного электрона от натрия к хлору. В результате электростатиче- р с. 13. Образование ионов ского взаимодействия Na+ и С1- [c.75]

    В I было отмечено, что электронная конфигурация атомов инертного газа является наиболее предпочтительной у атомов или ионов, образующи.х молекулу. Необходимо подчеркнуть, что такая конфигурация является предпочтительной, но не единственной прн образовании устойчивых ионов. Эти ионы известны для металлов больших периодов, нлиример Ре +, 1 е +, Сг + (т. е. имеющих не полностью достроенную -орбиталь). [c.76]

    Более того, мы хотели бы также подчеркнуть определенную условность классификации различных типов связей. Так, в 3 мы уже отмечали, что электроппаи конфигурация атомов инертного газа наиболее предпочтительна для атомов или ионов составляющих молекул, но не единственна. Наглядной иллюстрацией такого утверждения является, в частности, образование (например, в условиях газового разряда) устойчивого молекулярного иона Hj" . Интересно то, что эта частица состоит из двух протонов и одного электрона. Каждый атом водорода в частице Н2+ имеет валентную 1 s-op-биталь (рис. 26). Между двумя ядрами показана область перекрывания этих орбиталей, н единственный электрон большую часть времени проводит в области перекрывания между гдрами Нд и Нв. [c.99]

    Общим для всех элементов этой подгруппы является проявление ими степени окисления +2. Ионы этих элементов имеюг электронную конфигурацию атомов инертных газов. Свойства рассматриваемых щелочноземельных металлов поэтому во многом определяются радиусами их ионов, которые увеличиваются с ростом атомного номера от Ве + к [c.237]


Смотреть страницы где упоминается термин Инертные газы электронные конфигурации: [c.369]    [c.23]    [c.125]    [c.362]    [c.118]    [c.289]    [c.49]    [c.47]    [c.283]   
Курс неорганической химии (1963) -- [ c.147 ]

Курс неорганической химии (1972) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ

Электрон конфигурации

Электронная конфигурация

Электроны инертность



© 2025 chem21.info Реклама на сайте