Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ускоряющие агенты III

    При проведении конденсации фенола с ацетоном в присутствии соляной кислоты или хлористого водорода исследовались самые различные промоторы. Действие их неодинаково. Например свободная и однохлористая сера, тиосульфат натрия и т/зет-бутил-меркаптан являются малоэффективными. Данные по действию сероводорода разноречивы по-видимому, он ускоряет реакцию, однако в значительно меньшей степени, чем при использовании серной кислоты как конденсирующего агента. Селенистая и теллуристая кислоты и их соли ускоряют процесс ) , но выход дифенилолпропана не превышает 80—90%. Вероятно, выход можно увеличить, если повысить мольное отношение фенол ацетон в исходной смеси или количество катализатора, г- [c.123]


    Активирование фенолята с помощью МФ-катализатора, например бисульфата тетрабутиламмония, сильно ускоряет реакцию, и выход желаемого продукта возрастает в то же время при катализе N-метилимидазолом, который является нуклеофильным катализатором, активирующим ацилирующий агент, скорость реакции возрастает еще больше, но одновременно увеличивается и гидролиз. Использование этих двух катализаторов вместе приводит к удивительному эффекту скорость реакции превосходит суммарное увеличение скорости реакции от отдельных катализаторов, а гидролиз фосфорилхлорида идет только на 60%. [c.136]

    При использовании двуокиси азота в качестве нитрующего агента (испытывалась опытная установка процесса) нитрование пропана проводилось при 300 0 и давлении 1 МПа. Выход нитропарафинов на превращенный пропан составил 75—80%, а ла двуокись азота — около 90%. Установлено, что добавка кислорода к двуокиси азота ускоряет реакцию нитрования и увеличивает выход. [c.439]

    В одноленточных сушилках слой материала на ленте высыхает неравномерно часть материала, обращенная к ленте (при движении сушильного агента вдоль слоя материала), остается более влажной. Поэтому часто применяют многоленточные сушилки, в которых материал пересыпается с одной ленты на другую. Благодаря многократному пересыпанию материала он лучше омывается воздухом, при этом ускоряется процесс сушки и уменьшается расход тепла по сравнению с его расходом в одноленточных сушилках. [c.768]

    Косвенная сушка табака воздухом, подогреваемым в радиационно-конвективных теплообменниках, широко распространена,. а процессы прямой сушки продуктами сгорания находятся в стадии интенсивной проработки и освоения. Разбавление продуктов сгорания воздухом позволяет получать большое количество сушильного агента, а следовательно, повысить кратность циркуляции и ускорить сушку листа. Оно также снижает степень извлечения из табачного листа летучих веществ, от которых зависят вкусовые качества и запах готового сухого табачного листа. [c.344]

    Экспериментальные данные [56] показывают, как велико взаимное влияние твердых частиц газового потока друг на друга при транспорте. В прямоточном аппарате твердые частицы и транспортирующий агент текут совместно, но каждый со своей скоростью. Если происходит снижение скорости твердых частиц в каком-либо участке прямоточного аппарата, то на этом участке возрастает количество твердой фазы, приходящееся на единицу длины трубопровода. В результате увеличивается сечение, занимаемое твердой фазой, и возрастает скорость при постоянном расходе газа, так как уменьщается рабочее сечение аппарата. Таким образом движение массы твердых частиц автоматически снова ускоряется, благодаря чему восстанавливается прежнее состояние системы. , [c.179]


    В большинстве случаев повышение концентрации агрессивного агента в контактирующей среде ускоряет коррозию, но зависимость скорости коррозии от концентрации сложная. Для некоторых агрессивных агентов (например, сульфатов) существуют предельные концентрации, ниже которых коррозия невозможна. Величина предельных концентраций зависит от многих внешних факторов. [c.128]

    Для таких аппаратов обычно используют специальные горелки беспламенного горения, снабженные огнеупорной насадкой, которая в накаленном состоянии каталитически ускоряет процесс горения (эти горелки описаны в главе XV). В барботажных выпарных аппаратах, работающих при непосредственном соприкосновении выпариваемого раствора и греющего агента, достигаются более высокие коэффициенты теплопередачи, чем при выпаривании через стенку. [c.376]

    Эти заместители направляют электрофильный агент преимущественно в орто- и пара-положения и несколько облегчают его вхождение, т. е. ускоряют реакцию замещения. [c.329]

    Один из наиболее распространенных методов регенерации ценных компонентов из шламов сложного состава — выщелачивание. В качестве выщелачивающего агента для извлечения тяжелых металлов широко используется серная кислота. Во-первых, кислота, являясь недорогим реагентом, может быть извлечена в случае необходимости перегонкой. Во-вторых, теплота, вьщеляющаяся при разведении концентрированной серной кислоты и при реакции с основными гидроксидами, ускоряет процесс выщелачивания, В-третьих, создается кислая среда раствора, что удобно при последующем извлечении из него металлов. Выщелачивание с противо-точным движением твердой массы и кислоты может быть использовано для уменьшения промывки твердого осадка [7]. [c.98]

    Десорбцию производят также путем сообщения поглотителю тепла или снижением давления жидкости в обоих этих случаях возрастает движущая сила десорбции и, следовательно, процесс ускоряется. На практике широко распространены комбинированные методы десорбции (например, десорбция путем сообщения тепла при одновременном снижении давления жидкости). Во многих случаях выходящую из десорбера смесь компонента и десорбирующего агента подвергают частичной конденсации (стр. 324 сл.) получаемый при этом конденсат (флегму) обычно возвращают в десорбер. [c.309]

    Хлорирование и бромирование гомологов бензола в боковую цепь значительно ускоряется в присутствии перекисей. Индуцированное перекисями галоидирование может быть осуществлено также действием иных, кроме галоида, галоидирующих агентов. Так, например, при кипячении толуола с хлористым сульфурилом в присутствии перекиси бензоила (0,1%) селективно хлорируется боковая цепь (замещение в ядро при этом не имеет места)  [c.183]

    Полисульфидные каучуки — жидкие тиоколы —превращаются в резину после введения других компонентов, в том числе вулканизующих агентов. Вулканизация может прово- диться на холоду и при нагревании, что значительно ускоряет процесс. Основными компонентами тиоколовых покрытий являются эпоксидные или фенолоальдегидные смолы. Их добавка повышает адгезионные свойства тиоколовых покрытий, теплостойкость, твердость и диэлектрические свойства. По- [c.65]

    Изменение метеорологических условий и наличие в воздухе частичек морских солей способствует выпадению на поверхности металла агрессивных агентов, которые разрушают существующие на нем защитные пленки и ускоряют процесс коррозии. Коррозионная стойкость металлических поверхностей зависит также от характера атмосферы. Скорость коррозии железа в морской атмосфере равна 60—70 жкл/год, в промышленной — 40— 160 мкм/тоц. Цинк, свинец, медь, никель в морских условиях корродируют медленнее, чем в промышленных, причем скорость коррозии цинка в первом случае колеблется в довольно широких пределах — 2,4—15,3 жкл/год. [c.6]

    Хлорирование проводится в темноте либо в жидкой, либо в паровой фазе, и может ускоряться нагреванием, светом и такими катализаторами, как йод, металлы, галоиды металлов или другие агенты, способные превращать молекулу хлора в атомы хлора [664, 665]. Замещение происходит в различных позициях, и контроль возможен только в ограниченных размерах [430, 668, 669]. Так, метан хлорируется с получением некоторого количества всех четырех возможных хлорпроиззодных в реакции с пропаном получается либо первичный, либо вторичный хлориды. Жидкофазное хлорирование дает более высокий выход первичных продуктов замещения. [c.144]

    Эти соли полезно использовать в качестве МФ-катализатора в тех случаях, когда анион катализатора должен переходить в органическую фазу намного хуже, чем реагируюш,ий анион (по терминологии Брендстрёма такой процесс называется препаративная экстракция ионных пар). Изо всех обычных анионов наиболее подходящими являются бисульфат и хлорид. Во многих случаях можно использовать бромиды, однако применение иодидов часто вызывает трудности, особенно в тех случаях, когда в реакцию вводят алкилиодиды, что вызывает образование в ходе реакции дополнительных количеств иодид-ионов. При этом наблюдается отравление катализатора, которое состоит в том, что весь катализатор экстрагируется в форме иодида в органическую фазу и реакция останавливается. Так же как и в случае гомогенных реакций с предварительно полученной аммониевой солью, в системах с иодидами большую роль может играть ионный обмен. Следует подчеркнуть, что такой обмен в большинстве типичных МФК-реакций не является необходимым. Однако в некоторых реакциях в присутствии катализаторов добавление небольших количеств иодида ускоряет процесс иодид обменивается с галогенидом в алкилирующем агенте, делая его более активным (КХ+1 —Таким способом можно влиять на соотношение С/О-изомеров, образующихся при алкилировании амбидентных анионов (см., например, [1716]). [c.82]


    Гидрогенолиз глюкозы возможен при сравнительно низких температурах еще Иосикава и Ханаи [24] показали, что при добавлении гидроокисей и карбонатов бария, кальция, стронция гидрогенолиз углеводов ускоряется и снижается его температура — для глюкозы она составляет около 100 °С. При увеличении концентрации крекирующего агента температура начала заметного гидроге-нолиза моносахаридов может быть еще понижена. Описано получение 9,5% глицерина и 2% эритрита при 69°С и дозировке Са(ОН)г 4,5% к глюкозе [25]. Однако столь низкие температуры не имеют пока практического значения из-за малой скорости процесса увеличение времени реакции при температуре ниже 100°С может привести к образованию больших количеств высших полиолов, которые при температуре ниже 150°С вообще не расщепляются. [c.111]

    Сравнительно недавно были сформулированы Н. А. Васюниной А. А. Баландиным и Р. Л. Слуцкиным положения о системе катализаторов, действующих при гидрогенолизе углеводов и много атомных спиртов [52, 53], — о гомогенном катализаторе разрыва связи С—С (крекирующем агенте) и гетерогенном катализатор гидрогенизации. В то же время было открыто каталитическое дей ствие в этой реакции растворимых соединений металлов, наприме сульфата железа, хелатного комплекса железа с сахарными кисло тами, сульфата цинка и др., названных гомогенными сокатализа торами гидрогеиолиза [54, 55]. Механизм их действия рассмотре в гл. 3 добавление гомогенных сокатализаторов ускоряет гидроге нолиз в 2—3 раза с получением гидрогенизата примерно таког( же состава, как и без их применения. [c.122]

    В серии опубликованных работ [25—30] приведены результаты систематических исследований по выяснению влияния различных факторов на направление и скорость протекания реакций химической модификации концентратов асфальтенов, полученных из вакуумных нефтяных остатков по процессу Добен . Оптимизация процессов аминирования с использованием в качестве аминирующих агентов триалкиламинов (метил-, этил-и бутил-) и пиридина позволила получить высокие выходы нерастворимых сильноосновных анионитов (84—90%). При этом было показано, что с уменьшением молекулярных весов, с уменьшением содержания гетероатомов и с повышением степени конденсированности в исходных асфальтитах ускоряется реакция аминирования. Повышается скорость аминирования и с увеличением полярности растворителей. [c.262]

    Эти группы способны интенсивно гидратироваться, что приводит к значительному набуханию полимерного субстрата в реакционной среде, облегчая доступ гидролизующего агента к связям - ONH-, ускоряя тем самым гидролитический распад белка. [c.358]

    Как мы видели выше, синтез полиметиленов из метановых угле-ввдородов термодинамически невозможен. Кроме того, очень вероятно, что первоначально образующиеся олефины не могут превращаться в полиметиленовые углеводороды еще и по кинетическим причинам, потому что скорость циклизации олефинов в полиметилены ниже скорости гидрирования в метановые углеводороды. Принципиально возможность образования полимети-леиовых углеводородов из олефинов не исключается. Имеется много указаний на то, что такие агенты, как серная, фосфорная кислоты, окись алюминия, флоридин и активные глины ускоряют процесс полимеризации простейших олефинов с частичным образованием полиметиленовых и даже ароматических углеводородов. Чистый этилен с хлористым алюминием дает полимерные масла с формулой С Н2п-1, где х равен 8—15. Деароматизированный продукт имеет состав, явно говорящий о том, что в нем содержится много высших полиметиленовых углеводородов. [c.99]

    Аминолиз алкиловых эфиров — медленный, почти равновесный процесс. С термодинамической точки зрения пептидная связь немного прочнее. С химической точки зрения алкоксиды представляют собой не очень хорошие уходящие группы. Однако существует возможность ускорить образование пептидной связи, используя эфир с лучшей уходящей группой, т. е. активированный эфир . Аминолиз активированного эфира обеспечит энергию, необходимую для образования пептидной связи. -Нитрофенол — гораздо более сильная кислота, чем метанол (благодаря резонансной стабилизации аниона, см. выше), так что п-нитрофе-ниловый эфир аминокислоты — это активированный эфир. Такой эфир можно синтезировать из кислоты и п-нитрофенола в присутствии конденсирующего (дегидратирующего) агента, ДЦГК (см. ниже). Пентахлорфенол также более сильная кислота, чем метанол (благодаря отрицательному индуктивному эффекту хлора, см. выше), так что его можно использовать при получении активированных эфиров. [c.82]

    Впервые синтез К,0-бис(триметилсилил)ацетамида (БСА), являющегося одним из самых эффективных силилирующих агентов, описан Биркофером [1]. Он может быть использован для силилирования практически всех видов функциональных групп [2]. Этим вызвано широкое применение БСА в хроматографических исследованиях нелетучих соединений, а также в различных синтезах. У подавляющего большинства тяжелых структур, имеющих гидроксильные, карбонильные, карбоксильные и многие другие функциональные группы в результате силилирования увеличивается летучесть, и тем самым существенно ускоряется хроматографический и хромато-масс-спектральный анализ [3]. [c.11]

    Кислород воздуха, а также другие коррозионно-активные агенты, содержащиеся в атмосфере (особенно SO3 и окислы азота), играют важную роль в процессах атмосферной коррозии. Атмосферная коррозия протекает в тонких пленках электролитов, возникающих при адсорбции или конденсации воды на поверхности металлических конструкций. Диффузия кислорода и других газов через тонкие слои относится к быстрым процессам (см. 44), которые к тому же ускоряются из-за саморазмешивания слоев, вызванного градиентами поверхностного натяжения и температуры. [c.374]

    Вулканизация фторкаучуков ускоряется при применении сшивающих агентов — соединений, имеющих две двойные связи (например, диаллилтерефталат). Они легко присоединяются к углеродным атомам, лишенным атомов водорода в результате действия свободных радикалов перекисей, прокладывая между основными цепями поперечные цепи из атомов этих соединений  [c.153]

    Каучуки, вулканизованные только в смеси с вулканизующими агентами, не обладают необходимыми для различных целей жесткостью, сопротивлением растяжению, истиранию и надрыву. Эти свойства можно придать каучуку, добавляя в резиновую смесь так называемые наполнители. Они обычно бывают двух типов инертные наполнители (глина, мел и др.), которые почти не оказывают влияния на физические свойства резины, но облегчают переработку резиновой смеси, цусиливающие наполнители (обычно сажа), которые улучшают перечисленные выше свойства вулканизованного каучука. С целью предупреждения старения каучука, т. е. потери каучуком эластичности и других ценных свойств, в резиновую смесь вводят различные стабилизаторы — антиокислители (например, фенил-(5-нафтил-амин). Чтобы ускорить процесс вулканизации, в резиновую смесь вводят небольшие количества органических соединений, которые называют ускорителями (меркап-тобензтиазол, дифеинлгуанидин и др.). Оказалось, что для наиболее эффективного использования ускорителей вулканизации необходимо присутствие некоторых других химических веществ (обычно окисей металлов), называемых активаторами. В свою очередь действие активаторов наиболее эффективно в присутствии растворимых в каучуке мыл (солей жирных кислот), которые могут образовываться в процессе вулканизации. [c.422]

    Общее содержание азота. В соответствнн с традиционным методом онределения содержания азота но Кьельдалю (1883 г.), азотсодержащее соединение сначала разлагают, нагревая его с концентрированной серной кислотой. Разложение ускоряется в присутствии дегидратирующих агентов, таких как сульфат калия, или катализаторов, например сульфата меди (II) ири этом углерод окисляется до диоксида углерода, а входящий в состав анализируемого соединения азот превращается количественно в сульфат аммония. Далее гидроксид калия взаимодействует с сульфатом аммония с образованием слабоосновного гидроксида аммония, который преврагцают в газообразный аммиак, абсорбируют и титруют кислотой. [c.95]

    Ионы многих металлов, например меди и марганца, катализируют разложение гидропероксидов и ускоряют окислительную деструкцию полимеров. Каталитическую активность металлов переменной валентности объясняют образованием коордипацпонного соединения е гидропероксидом, которое сопровождается переносом заряда между гидропероксидом и ионом металла. Поэтому введение в систему сложных хелатирующих агентов (бис- п полиядер-ных фенольных АО) приводит к конкурирующему взаимодействию ионов металлов с ними и образующимися в процессе окисления полимера гидропероксидамп и, благодаря значительно большей прочности хелатов, к существенному уменьшению эффективной концентрации катализатора разлол ения пероксидов. [c.260]

    Общую- скорость реакции карбонильного соединения может определять как стадия присоединения (Г.7.7), так и стадия конденсации (Г.7,9). При реакциях, с сильнонуклеофильными веществами (аммиак, алифатйческие амины, гидроксиламин) в нейтральной или щелочной среде присоединение, как правило, идет быстро, так что скорость реакции определяется деглдратацией (Г.7.9). Поскольку эта стадия катализируется кислотами, добавление последних ускоряет реакцию. Однако кислота, играющая роль катализатора, взаимодействует и с нуклеофильным агентом, превращая его в соль и тем самым блокируя его свободные электронные пары. Чем сильнее основание, вступающее в реакцию, тем ниже концентрация кислоты, при которой происходит блокирование. Солеобра-зование может настолько понизить скорость присоединения (Г.7.7), что онО превращается в стадию, определяющую скорость всего процесса. Поэтому нередко бывает так, что карбонильная реакция при некотором определенном рГГ [c.55]

    Наиболее удобным агентом для дегазации поверхности пола или стола является 20%-ный водный раствор хлорного железа, который способен эмульгировать капли ртути, что сильно ускоряет ьзаимодействие ртути с хлорным железом. Этим раствором обильно смачивают при помощи кисти всю зараженную ртутью поверхность и оставляют на 1—2 суток до полного высыхания. Если по каким-либо причинам столь длительная дегазация невозможна, раствор вместе с эмульгированной рту тью можно удалить через 4—б ч. Продегазированное место несколько раз промывают водой. [c.281]

    Алкилирование эфиров ацилуксусных кислот. Предметом многочисленных исследований было алкилирование эфиров аце-тоуксусной кислоты. Первое из них относится еще к 1954 г. [294], когда было замечено, что алкилирование этилового эфира ацето уксусной кислоты 1,3-дихлорбутеном-2 ускоряется в присутствии аминов (фактически катализатором служила четвертичная соль, образующаяся при реакции аминов с хлоридом— алкилирующим агентом). Выход моноалкильного производного составил в оптимальных условиях 57% [294—296]. Позже алкилирование метилового эфира ацетоуксусной кислоты было подробно исследовано [271]. Показано, что в системе [c.107]


Смотреть страницы где упоминается термин Ускоряющие агенты III: [c.28]    [c.190]    [c.127]    [c.172]    [c.303]    [c.132]    [c.62]    [c.65]    [c.122]    [c.430]    [c.162]    [c.96]    [c.150]    [c.152]    [c.88]    [c.362]    [c.677]    [c.396]    [c.929]    [c.276]   
Физическая химия силикатов (1962) -- [ c.160 ]




ПОИСК







© 2025 chem21.info Реклама на сайте