Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Асимметрия других атомов

    Чаще всего органические оптически активные молекулы содержат один или более асимметрических атомов углерода, который связан с четырьмя различными заместителями, расположенными в вершинах тетраэдра, в центре которого находится атом углерода (рис. 19, а). Наличие в молекуле асимметрических атомов углерода — наиболее распространенный вид асимметрии. Другим типом асимметрии обладает молекула, закрученная в спиральную структуру. На рис. 19, б вычерчены правая спиральная структура и ее зеркальный антипод — левая спиральная структура. Молекула, свернутая в спираль одного и того же направления, будет оптически активна, даже если она не содержит асимметрических атомов. [c.35]


    Поскольку центральный атом углерода в аллене находится в состоянии зр-гибридизации, его Ру и р,-электроны движутся во взаимно перпендикулярных плоскостях, что обусловливает и соответствующую стереохимию С1 —Са и Са—Сз я-связей. В таком случае группы К СК" лежат также перпендикулярно друг другу. Это приводит к молекулярной асимметрии, которая и была подтверждена синтезом оптически активного аллена  [c.118]

    Асимметрический атом углерода — главная, но не единственная причина оптической активности органических веществ. Асимметрическими могут быть и атомы других элементов — кремния, азота, фосфора, мышьяка, серы и др. Оптическая активность может появиться и без асимметрического атома, за счет асимметрии всей молекулы в целом (молекулярная асимметрия). В комплексных соединениях асимметрия часто возникает в октаэдрической пространственной структуре. [c.42]

    Опыт показывает, что у всех молекул с ковалентными связями, а также атомов инертных газов имеет место некоторая постоянная электрическая асимметрия в расположении электрических зарядов в частице. Она возникает в результате движения электронов в атомах и колебательного движения ядер. Это вызывает попеременное появление и исчезновение диполей. Атом является как бы мгновенным диполем, который непрерывно изменяется как по величине, так и по направлению. Атомы, как мгновенные диполи, сближаясь, взаимодействуют друг с другом. Силы притяжения, непрерывно действующие между атомами н молекулами, обусловленные появлением мгновенных диполей, называются дисперсионными. [c.68]

    Для трехзамещенных бензола существуют также три различных изомера рядовой, в котором все три заместителя расположены подряд симметричный, в котором все заместители расположены через один атом углерода, т. е. симметрично асимметрии- ный, в котором с одной стороны заместители стоят рядом, а с другой — через один атом углерода, т. е. несимметрично. Названия изомеров также пишут обычно сокращенно в виде начальных букв, отделен- ных от названия изомеров дефисом  [c.132]

    Представление о пространственном расположении атомов в молекуле приводит к предположению, что не только в случае углерода, но и в случае атомов других элементов, когда они соединены с четырьмя различными атомами или группами, можно ожидать асимметрии этих молекул аналогично асимметрии молекул, содержащих асимметрический атом углерода. Следовательно, и здесь можно ожидать существования стереоизомеров, являющихся оптическими антиподами. [c.343]


    Различие в механизмах прототропной проводимости ионов водорода и гидроксила обнаруживается также в том, что проводимость и числа переноса кислот и оснований при добавлении неэлектролитов изменяются по-разному. Произведение Лг] для водных растворов КОН с увеличением содержания метанола, этанола и пропанола вначале возрастает, достигает максимума при концентрации спирта 6—8 мол. % и затем заметно снижается [12, 19, 20]. Для растворов с небольшим количеством воды или совершенно безводных значения Лт) почти не отличаются от значений, соответствующих растворам K I или KF (рис. 4.32 и 4.33). Влияние гликоля и глицерина заметно иное. Произведение Atj для растворов КОН плавно снижается до содержания гликоля 15 мол. %, затем в широком интервале концентрации неэлектролита сохраняется постоянным и, наконец, в растворах с низкой концентрацией воды вновь незначительно снижается. В присутствии глицерина минимум Aii соответствует его содержанию примерно 8 мол. %. При большем содержании глицерина Ат) ощутимо возрастает. Изменение структуры воды, обусловленное присутствующим в относительно низкой концентрации электролитом, оказывает на величину Ат] для содержащих гликоль и глицерин растворов КОН влияние, противоположное его влиянию на аналогичные растворы KF, КС1 и НС1. При добавлении небольшого количества гликоля или глицерина проводимость ионов гидроксила снижается в большей мере, чем вследствие повышения вязкости раствора. В отличие от других изученных ионов разупорядочивающее действие ионов гидроксила перекрывается другим эффектом. Возможно, он связан с высокой асимметрией (значительным дипольным моментом) иона 0Н . Заслуживает особого внимания быстрое возрастание значения Лт] при повышении концентрации глицерина. В этом случае Atj значительно выше, чем для любого из указанных растворов электролитов (за [c.453]

    Две группы метильных протонов неэквивалентны, вероятно, из-за того, что одна трет-бутильная группа расположена ближе к атому кислорода, чем другая. Отнесение сигнала при 9,15 м. д. более близко расположенным метильным группам сделано по аналогии со спектром соединения 4 (см. ниже). Появление квадруплета при 6,73 м. д. показывает, что два метиленовых протона неэквивалентны или вследствие затрудненности вращения около центральной связи С —С, или вследствие асимметрии соседнего атома углерода ([10], стр. 99 и сл.). [c.54]

    В 1916 г. американский физико-химик Г. Льюис развил теорию ковалентной, или гомеополярной, связи. По теории Льюиса при сближении двух одновалентных атомов их валентные электроны образуют пару (дублет), общую для обоих атомов. В этом случае электроны движутся в поле обоих ядер и тем самым связывают атомы в единое целое. Если э. о. одного из атомов больше э. о. другого, то центр тяжести отрицательного заряда электронов будет находиться ближе к первому атому. Этим объясняется электрическая асимметрия молекулы, или ее полярность. В предельном случае электронная пара полностью переходит к одному из атомов, и тогда образуется ионная связь. Примером ковалентной связи служит связь в молекуле водорода, в которой связующий дублет образован валентными электронами атомов водорода. Молекула водорода электрически симметрична, так как э. о. обоих атомов водорода одинакова. [c.502]

    Наиболее естественным и простым объяснением описанных выше закономерностей, проявляющихся в изменении формы Ка),2-линий атомов ннкеля в изученных соединениях, является допущение, что вхождение атомов этого элемента в соединения с различной валентностью и связанное с этим изменение в строении их периферийных 3d- и 4х-оболочек приводит к незначительным по величине смещениям в положении Kai,2-линий. Если же атом в силу тех или иных кристаллохимических причин присутствует в решетке в нескольких энергетически не эквивалентных состояниях, то наблюдающаяся в этом случае форма рентгеновских Ка - и Каз-линий представляет собой результат наложения нескольких слегка смещенных друг относительно друга симметричных линий, каждая из которых появляется в результате электронных 2р—ls-переходов в атомах определенного сорта. Интенсивность каждой из индивидуальных эмиссионных линий тем больше, чем большая часть атомов элемента, образующего испытуемый препарат, участвует в ее создании. Поэтому, например, при изменении условий получения окислов нпкеля, которое, повидимому, сопровождается более или менее существенным изменением энергетического состояния атомов никеля в дефектной решетке окисла, неизбежно должен изменяться и индекс асимметрии экспериментально наблюдающихся профилей эмиссионных Kai,2-линий. [c.69]

    Тиоколхицин и другие -алкильные производные тиоколхидеи-на окислением преобразованы 63,167 О-жЬ -изомеры соответствующих 5 оксидов, где асимметрию обусловливает атом серы. Получают, кроме того, 5-диоксиды " 66,168. [c.43]

    У линейных полимеров этилена. вследствие отсутствия двойных связей и асимметр[Леских атомов углерода не наблюдается стереоизомерии, но если заменить хотя бы один водород молекулы мономера на какой-нибудь другой атом или радикал, появляется третичный атом углерода, который в полимерной молекуле становится асимметрическим  [c.173]


    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    Все эти соединения, за исключением форм 7 и 8, построены симметрично и поэтому оптически недеяте тьны. Соединения 7 и 8 являются зеркальными изображениями друг друга и не совместимы, хотя в них нет асимметрического атома углерода. Их молекулы построены асимметрично, в данном случае имеет место так называемая молекулярная асимметрия. В этих формах (7, 8), в которых одинаковые заместители в положениях 1, 2 и 4 находятся по одну и ту же сторону плоскости цикла, каждый атом углерода циклогексанового кольца связан обеими кольцевыми валентностями с одним радикалом (пентаокси-метиленовая цепь), состоящим из двух структурно идентичных, но пространственно различных половин, т. е. половин, которые не являются зеркальными изображениями друг друга. [c.799]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    Введение в одно из колец любой другой метки , не делающей атом асимметрическим, все же создает асимметрию узловых атомов. В качестве примера остановимся на декало-нах-1, для которых можно предвидеть существование стереоизомерных форм (см. верхнюю схему на стр. 394). [c.393]

    У мускона углеродный атом, связанный с метильной группой, является асимметрическим, так как часть кольца, П])исоединенная к нему с одной стороны, содержит Р-кетогруппу, а часть кольца, присоединенная с другой стороны, не содержит. При восстановлении карбонильной группы асимметрия исчезает. [c.744]

    Здесь С — меченый атом углерода. В реакцию вступает только одна группа СООН, химически и геометрически неотличимая от другой. Это объясняется асимметрией активного центра. Так как группы фермента, связывающиеся с карбоксилами, различны, то неодинаковы и реакции карбоксилов. Ферменты хорошо различают стереоиэомеры, и оптический антипод данного субстрата субстратом уже не является. [c.184]

    Среди аминокислот, обнаруженных в белках, имеются такие, которые, кроме а-углерода, содержат второй асимметрический атом углерода (треонин, оксилизин, изолейцин, оксипролин). Благодаря появлению второго центра асимметрий количество изомеров возрастает (2 ). Так, например, треонин имеет 4 изомера. Треонин, выделенный из белков, имеет стереохи-мическую конфигурацию, названную L-треонином, тогда как его зеркальный антипод должен называться D-треонином. Два других возможных изомера будут, очевидно, отличаться по конфигурации только у одного из центров асимметрии и обозначаются как L-аллотреонин и D-аллотреонин (греч. alios — другой). Нетрудно видеть, что треонин и аллотреонин являются днастереоизомерами. [c.28]

    ДИАСТЕРЕОИЗОМЕРЫ — изомеры, отличающиеся друг от друга конфигурацией двух (или нескольких) элементов асимметрии и не относящиеся друг к другу, как предмет к его зеркальному изображению, Д. — молекулы, ионы, а также такие соли, в к-рых различные элементы асимметрии присутствуют как в катионе, так и в анионе. Примером может служить 1,2,3-триоксибутан-4-аль. В этом соединении атомы 2 и 3 — асимметрические, и каждый из них может иметь либо В-, либо Ь-конфигурацию, Число возможных изомеров, определяемых числом сочетаний, Л =2 (где п — число асимметрич. атомов), равно четырем. Изомеры ПСз- 0Сз(1) и ПСа- ЬСз (II) являются диастереоизомерами О-ряда (по атому Сз выбранному в качестве ключевого атома), Изомеры ЬСз- ЬСз (III) и ЬСа ВСз (IV) — диастереонзомерами Ь-ряда, Изомер III является зеркальным изомером (анти- [c.549]

    S-, р- или d-электронов, а с участием электхюнов, находящихся в более сложных состояниях, описываемых гибридизованными функциями (см. Атом, Валентность, Химическая связь). Гибридизация сопровождается пз-менением симметрии электронных орбит в атомах, что обусловливает появление т. наз. атомного диполя. Так, четыре симметричные (относительно ядра) электронные орбиты (s, Рх, Ру, Pz атома углерода образуют четыре эквивалентных орбиты sp i, ка1кдая из к-рых не симметрична относительно ядра. Такое же полоткение имеет место у атома углерода в состояниях sp2,sp, а таюке у нек-рых других атомов. Д. м. химич. связи, обусловленный асимметрией атомных орбит, может в нек-рых случаях достигать значительной величины. Различие Д. м. связей С—Н в метане, этилене и ацетилене, атомы углерода в к-рых, соответственно, находятся в состояниях гибридизации sp , sp и sp, обусловлено в значительной мере различием атомных Д. м. [c.566]

    Существует и более простой рентгеновский метод, который применяется в том случае, когда в лиганде содержится асимметрический атом с известной абсолютной конфигурацией. С помощью обычной методики находят относительные конфигурации всех источников асимметрии если в системе имеется центр с известной конфигурацией, установленной другим путем, то по этому центру можно определить абсолютную конфигурацию всего комплекса. Таким способом были исследованы [25, 26] комплексы, изображенные на рис. 2 и 3. Преимущество данного метода состоит в том, что для очень многих молекул органических веществ абсолютная конфигурация уже надежно установлена [ 18 [методами классической стереохимии в сочетании с абсолютным методом Бейвута, благодаря чему известно большое число молекул, которые можно применить в качестве стандартных систем с известной конфигурацией. Среди них многие важные лиганды, такие, как оксикислоты, 1,2-диамины, а-амино-кислоты и пептиды. Можно ожидать, что использование подобных веществ (с асимметрическим атомом углерода) в качестве внутреннего стандарта позволит значительно расширить область применения указанного метода. [c.154]

    Таким образом, особенности температурной зависимости частоты ЯКР часто определяются особенностями химической связи, в которой участвует исследуемый атом. Рассмотрим еще один пример, где необычная температурная зависимость подтверждает наличие межмолекулярного координационного взаимодействия (рис. 3-3). Если высокочастотная линия ЯКР С1 в 5ЬС1д удвоенной интенсивности достаточно хорошо подчиняется закону Байера, то низкочастотная имеет две особенности 1) наличие максимума в области 55 ° К и 2) малый температурный коэффициент частоты выше этой температуры. Расчеты [22] хорошо объясняют такое поведение наличием координационного взаимодействия атома хлора, отвечающего низкочастотной линии ЯКР, одной молекулы 5ЬС1з с атомом сурьмы другой молекулы. Электронная плотность с ря-орбитали атома хлора подается на свободную -орбиталь атома сурьмы, что подтверждается понижением частоты ЯКР этого атома хлора по сравнению с двумя другими и большим параметром асимметрии градиента поля для этого атома (т] = 15,7%) [21]. С повышением температуры на частоту ЯКР действуют два конкурирующих механизма деформационные колебания, ослабляющие координационную связь и повышающие частоту ЯКР, и обычное байеровское усреднение градиента электрического поля, понижающее частоту ЯКР. [c.46]

    Оптическая (зеркальная) изомерия обусловлена наличием в молекуле асимметрич. атомов углерода или реже асимметрич. атомов других элементов. Один асимметрический атом углерода определяет существование двух зеркальноизомерных веществ, различающихся направлением вызываемого ими вращения плоскости поляризованного света при полной идентичности всех остальных физич. и всех химич. свойств. Число возможных оптич. стереоизомеров определяется числом асимметрич. атомов С в молекуле и составляет 2 , где п — число асимметрич. атомов углерода в молекуле. При нескольких асимметрич. атомах в молекуле появляется возможность образования диастереоизомеров, отличающихся таким сочетанием элементов асимметрии, при к-ром эти изомеры не относятся друг к другу, как предмет к своему зеркальному изображению. Поэтому они различаются не только вращением плоскости поляризации света, но и другими физич. и в нек-рой мере химич. свойствами. Примером диасте-реомеров могут служить винные кислоты. [c.525]

    Все одновалентные или двухвалентные атомы имеют плоскость симметрии и, следовательно, не могут быть причиной хиральности молекулы. Трехвалентные и четырехвалентные атомы с двумя, по крайней мере, идентичными заместителями также имеют плоскость симметрии. Только трехвалентные или четырехвалентные атомы, у которых все заместители отличаются друг от друга, не имеют плоскости симметрии и могут, но не обязательно, вызывать асимметрию молекулы как целого. Такой атом (обычно атом углерода) называется асимметрическим атомом, и именно Он наиболее часто обусловливает хиральность молекулы, а следовательно, и оптическую активность. (Вследствие этого иногда встречается неточный термин оптически активный атом .) В принципе, заместители при асимметрическом атоме могут быть расположены двумя способами правым или левым — в том смысле, как говорят о левоориентированной и правоориентированной спиралях. [c.15]

    Из структуры 1.14 также видно, что в комплексе со стиролом С = С-система связана с металлом несимметрично атом палладия расположен ближе к концевой =СН2-группе, однако плоскость, проходящая через атомы Сь Сг, Сз, практически перпендикулярна плоскости системы (Р(1С1)2. Другой вид асимметрии найден в дипентеновом комплексе 1.16, где одна С = С-связь наклонена на 60° (1,044 рад) к плоскости, нормальной к плоскости атомов Р(1С12 и перпендикулярной оси у. В первом случае искажение может быть результатом несимметричного расположения л- и л -орбиталей относительно атомов углерода двойной связи свободного стирола, в то время как искажение дипентенового лиганда, по-видимому, обусловлено пространственными требованиями дипентена. [c.48]

    Стереоизомерия. Теория вращения плоскости поляризации еще не может считаться вполне выясненной, но несомненно, что явление это связано с присутствием в органической молекуле асимметрического атома углерода, азота и пр. Эту асимметрию, как известно, Вант-Гофф и Лебель (1874) объяснили для случаев углерода тетраэдрическим строением если атом углерода связан с четырьмя различными группами, то возможны две конфигурации, которые не наложимы друг на друга (рис. 129). [c.337]

    Как видно из рассмотрения формз лы цинхонина, атомы 3, 4, 8 я 9 являются центрами оптической асимметрии. Приведенная формула может изображать любой из 16 возможных изомеров. Однако, на самом деле в то время как цинхонин, имеющий [а]1/= 4-223°, является изомером природного цинхонидина — [а]о = —111°, оба эти соединения при окислении в положении 9 дают один и тот же кетон, цинхонинон, [а] , =-f-71°. Это показывает, что оба изомера отличаются друг от друга прежде всего, а могкет быть, и исключительно только конфигурацией групп, прпсоединенных к углеродному атому 9. [c.550]


Смотреть страницы где упоминается термин Асимметрия других атомов: [c.299]    [c.67]    [c.270]    [c.474]    [c.130]    [c.130]    [c.67]    [c.147]    [c.41]    [c.89]    [c.312]    [c.28]    [c.118]    [c.6]    [c.6]    [c.42]    [c.117]    [c.65]    [c.32]    [c.249]   
История химии (1975) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Другие атомы



© 2025 chem21.info Реклама на сайте