Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические свойства

    Здесь следует отметить, что с точки зрения технологических свойств резиновых смесей имеются определенные трудности, которые почти всегда приходится преодолевать, при внедрении кау- [c.77]

    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]


    Иевулканизованные сажевые смеси на основе карбоксилсодержащего полиизопрена обладают большой термопластичностью вследствие легкого разрушения солевых связей при нагревании, в то время как создание редкой сетки ковалентных связей реакцией гидроксилсодержащего полимера с полиизоцианатами позволяет и при повышенной температуре сохранить весьма высокую прочность. Редкая сетка не ухудшает технологических свойств смеси. Межмолекулярные связи в НК и его взаимодействие с сажей при нагревании резко ослабевают. [c.230]

    Важной составной частью работ по синтезу каучуков с необходимым комплексом свойств явились структурные исследования, направленные, с одной стороны, на изучение зависимости молекулярной структуры полимеров различных типов от условий их синтеза и, с другой, на установление -закономерностей влияния основных молекулярных параметров на физические, физико-механические и технологические свойства полимеров. Развитие этих исследований в значительной мере опиралось на труды А. П. Александрова, П. П. Кобеко, В. А. Каргина и П. Флори, в которых были сформулированы фундаментальные принципы строения молекулярных цепей и релаксационной природы механических и вязко-, эластических свойств полимеров. [c.14]

    Состав и свойства азотистых соединен]1Й нефти еще мало изучены. Несмотря на то, что азотистые соединения открыты в нефти еще в 1817 г. [49] и впервые выделены из нее в 1887 г. [55], изучению их состава уделялось крайне недостаточное внимание. Раньше полагали, что в противоположность сернистым соединениям соединения ааота мало влияют на эксплуатационные и технологические свойства нефти и нефтепродуктов. [c.42]

    Ко второй группе факторов относятся физико-механические и технологические свойства материалов. [c.5]

    Наиболее важными технологическими свойствами материалов, которые следует учитывать при их выборе, являются свариваемость, обрабатываемость давлением и резанием [6]. [c.5]

    Следует отметить также, что для улучшения технологических свойств рассматриваемых каучуков были разработаны приемы, приводящие к получению разветвленных полимеров [5, г, д]. [c.57]

    Для образцов СКИ, полученного с титановым катализатором, отсутствует корреляция между показателями пластичности и вязкости по Муни н средневязкостной молекулярной массой для золь-фракции указанные зависимости имеют обычный вид вязкость по Муни возрастает, а пластичность уменьшается при увеличении значения характеристической вязкости. Наличие в каучуке плотного геля ухудшает его технологические свойства [24]. [c.208]


    Возможность направленного синтеза эластомеров, обладающих необходимым комплексом физических, физико-механических и технологических свойств, неразрывно связана с решением ряда структурных проблем. [c.72]

    Данные по технологическим свойствам резиновых смесей ниже будут рассматриваться с точки зрения молекулярного строения конкретных полимеров такой подход удобен тем, что он непосредственно связан со спецификой синтеза эластомеров и, соответственно, с возможностью регулирования тех или иных их молекулярных параметров путем направленного воздействия на процесс полимеризации. [c.73]

    Один из традиционных подходов к разрешению этого противоречия и реализации преимуществ идеального молекулярного строения каучуков (линейное строение, высокая молекулярная масса, узкое ММР) заключается в получении каучуков, технологические свойства которых улучшают путем введения значительных количеств пластификаторов (нафтеновые и ароматические масла). [c.93]

    Пласто-эластические показатели каучуков. В промышленности для оценки технологических свойств каучуков используют различные показатели, такие как пластичность, вязкость по Муни, восстанавливаемость, твердость по Дефо, хладотекучесть, индекс расплава и т. д. Эти показатели определяются для сырых каучуков большинство из них характеризуют величину эффективной вязкости полимеров при различных режимах деформирования и различных скоростях сдвига. [c.80]

    Для цис-полибутадиеновых каучуков было найдено а =1,60, Ь = 0,45 для аморфных сополимеров этилена с пропиленом — 60% (мол.) этилена о = 1,63, Ь = 0,38 [26]. Аналогичные уравнения получены для растворных бутадиен-стирольных каучуков [27] Из уравнения (1) следует, что ввиду слабой зависимости вяз кости по Муни, определенной при 100 °С, от полидисперсности полимеры с различным ММР и технологическими свойствами в частных случаях, могут иметь близкие (или даже равные) зна чения вязкости по Муни. [c.81]

    В последние годы разрабатываются принципиально новые подходы к разрешению указанного выше противоречия, суть которых сводится к устранению трудностей, связанных с плохими технологическими свойствами смесей. Один из путей решения проблемы заключается в получении каучука в виде порошка применение каучука в порошкообразном состоянии значительно облегчает приготовление смесей и позволяет использовать более высокомолекулярные каучуки, чем те, которые перерабатываются в обычном блочном состоянии. Некоторые из каучуков уже выпускаются в порошкообразном виде в промышленном масштабе. [c.94]

    Каучуки, получаемые в присутствии щелочных металлов, характеризуются широким ММР, что обусловливает их хорошие технологические свойства. Они не требуют предварительной пластикации, легко смешиваются с сажей и другими ингредиентами, при шприцевании и каландровании получаются изделия с гладкой поверхностью. [c.186]

    Наиболее важными молекулярными параметрами, которые определяют технологические свойства полимера, являются молекулярная масса, молекулярно-массовое распределение, степень разветвления и сшивания. СКИ с широким молекулярно-массовым распределением характеризуется лучшими технологическими свойствами по сравнению с аналогичными полимерами, отличающимися более узким ММР. [c.208]

    Каучук СКД выпускается в СССР в промышленном масштабе. В зависимости от марки каучука его вязкость по Муни при 100°С может меняться от 30 до 60. Каучуки СКД отличаются и технологическими свойствами — вальцуемостью. Требуемые технологические свойства обеспечиваются условиями получения полимера, изменения которых позволяют варьировать коэффициент его полидисперсности в пределах от 1,5 до 5,0. [c.189]

    Трудно совместить высокие физико-механические показатели резин из СКД с хорошими технологическими свойствами, поэтому для каждой конкретной области применения каучука должны учитываться требуемые эксплуатационные характеристики и условия переработки. [c.191]

    При приготовлении резиновой смеси в условиях повышенных температур (70—80°С) СКД-2 и СКД-3 деструктируют в меньшей степени и по технологическим свойствам незначительно отличаются от СКД с тем же коэффициентом полидисперсности. Ниже сопоставлены свойства резиновых смесей на основе СКД-3 и СКД (вязкость по Муни 50) при различных температурах смешения  [c.193]

    Ввиду специфического поведения БНК при переработке, особенно в условиях высоких температур, рекомендуются следующие режимы смешения для мягких смесей с пластичностью 0,50—0,70 и смесей средней жесткости с пластичностью 0,36—0,05 смешение в резиносмесителях вместимостью 45 и 140 л по одностадийному режиму при температуре не выше 130 °С. Серу вводят в начале смешения в виде маточной смеси с наполнителем, а мягчители — раздельно. В том случае, если температура не превышает 130°С, целесообразно проведение одностадийного смешения, выше 130°С — двухстадийного. В первой стадии вводят только часть сажи и на второй стадии в концентрированную относительно каучука маточную смесь добавляют необходимое количество сажи. При двухстадийном смешении можно снизить температуру смешения первой стадии со 140—150 °С до 105—110 °С. Проведение двухстадийного смешения позволяет уменьшить скорость структурирования, улучшить технологические свойства и уменьшить склонность к под-вулканизации. Смеси повышенной жесткости (с пластичностью [c.362]


    В то же время уравнение (3) позволяет оценить технологические свойства резиновых смесей на основе каучука СКД [89]. Для этого достаточно измерить каучука и определить его вальцуемость по коэффициенту полидисперсности (см. рис. 9) или непосредственно из зависимости вальцуемости от М ° (рис. 10). [c.197]

    В бутадиен-стирольный каучук растворной полимеризации следует вводить высокодисперсные печные сажи, которые придают каучуку хорошие технологические свойства при 60—130°С и обеспечивают достаточно высокий комплекс физико-механических свойств. Сополимеры растворной полимеризации требуют меньших количеств серы и ускорителей, чем эмульсионные БСК, для достижения оптимальных свойств. [c.280]

    В настоящее время основное количество бутадиен-стирольного каучука выпускается при температуре сополимеризации 5°С (низкотемпературные каучуки), в меньших количествах при температуре полимеризации 50°С (высокотемпературные каучуки). Каучуки низкотемпературной полимеризации характеризуются более высокой молекулярной массой,, меньшим содержанием низкомолекулярных фракций, лучшими технологическими свойствами, хорошей совместимостью с другими каучуками. [c.249]

    При механической обработке бутадиен-стирольный каучук растворной полимеризации не деструктирует. Он хорошо смешивается с другими каучуками общего назначения СКИ-3, СКД и др. В связи с узким фракционным составом бутадиен-стирольный каучук растворной полимеризации характеризуется худшими, чем БСК, технологическими свойствами, однако он, в отличие от БСК, может наполняться значительно большим количеством сажи и масла без заметного ухудшения физико-механических свойств. Улучшить способность к переработке бутадиен-стирольного каучука растворной полимеризации можно за счет расширения ММР полимера, введением пластификаторов и другими приемами. [c.279]

    Двойные сополимеры (СКЭП) со средней молекулярной массой не пластицируются при 60—100°С, и их пласто-эластические и технологические свойства определяются в основном молекулярной массой и ММР. При одной и той же молекулярной массе с увеличением коэффициента полидисперсности, а также композиционной неоднородности улучшаются технологические свойства сополимеров в тех операциях, где используются сдвиговые усилия, например улучшается способность к переработке на вальцах и шприцеванию [56, 57]. Из пласто-эластических показателей наи-Оолее чувствительна к ММР вязкость по Муни. Однако вязкость [c.311]

    Технологические свойства ЦПА становятся удовлетворительными лишь при 80—100°С, когда наполнители легко и гомогенно распределяются в смеси при обработке на вальцах [4]. В отличие от ТПА резиновые смеси на основе ЦПА не обладают когезионной прочностью и клейкостью. [c.326]

    Лучшие технологические свойства имеют мягкие каучуки и каучуки низкотемпературной полимеризации. Мягкие каучуки подвергают пластикации в значительно меньшей степени и не во всех случаях. [c.361]

    Образование трещин в сварных соединениях ферритных сталей не имеет ничего общего с замедленным разрушением, характерным дая сварных соединений закаливающихся сталей. Показатели трещиностойкости ферритных сталей формируются непосредственно в процессе сварочного нагрева и в дальнейшем остаются неизменными. Это упрощает исследования свариваемости сталей ферритного класса, так как в данном случае испытания образцов не обязательно проводить сразу после их сварки. Технологические свойства ферритных сгалей ири сварке могут быть оценены по степени влияния сварочного нагрева на значение температуры перехода околошовного металла в хрупкое состояние. Количественная оценка склонности сварных соединений к растрескиванию может быть произведена с использованием способов механики разрушения - по уровню [c.246]

    Перейдем к рассмотрению технологических свойств каучуков. Под этим термином обычно понимают комплекс свойств, связанных с поведением невулканизованных резиновых смесей на различных стадиях технологического цикла переработки каучуков. [c.73]

    Для удаления с поверхности черных металлов окалины и ржавчины толщиной до 3 мм используется паста Целлочель . В состав пасты входят соляная кислота, уротропин, жидкое стекло, бумажная масса или мелкие древесные опилки и вода. Соляная кислота, легко растворяя ржавчину, не действует на основной металл благодаря присутствию ингибитора — уротропина. Жидкое стекло и наполнитель служат сгустителями пасты и улучшают ее технологические свойства. Пасту приготовляют, смешивая компоненты в кислостойкой посуде при комнатной температуре. Паста годна к использованию через сутки после приготовления (по внешнему виду и вязкости она напоминает консистентную смазку). [c.74]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    В настояшее время в опытном и промышленном масштабе выпускаются как изопреновые (СКИЛ, карифлекс и др.), так и бутадиеновые (СКДЛ, интен и др.) каучуки литиевой полимеризации. Для улучшения технологических свойств этих полимеров необходимо регулирование их ММР на рис. 2 приведены кривые ММР (гель-хроматограммы) полиизопренов типа карифлекс. а в табл. 2 — данные по молекулярной структуре ряда марок промышленных полибутадиенов литиевой полимеризации. [c.57]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Было показано, что при полимеризации бутадиена с использованием гомогенной каталитической системы Т112С12 + А1 (изо-С4Нэ)з образуются линейные полимеры с преимущественным содержанием (- 90%) цис-1,4-звеньев. В условиях полимеризации при низких температурах (<15°С) этот процесс обладает многими чертами полимеризации по механизму живых цепей уменьшение средней молекулярной массы при увеличении концентрации катализатора, увеличение средней молекулярной массы с возрастанием глубины конверсии, узкое ММР и др. Для получения с помощью этой каталитической системы каучуков с приемлемыми технологическими свойствами применяют различные приемы, приводящие к расширению ММР и (или) образованию разветвленных макромолекул. В табл. 4 приведены молекулярные [c.59]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    При увеличении скорости (напряжения) сдвига значение а в уравнении (1) снижается, а Ь — возрастает, т. е. чувствитель ность вязкостных измерений к полидисперсности полимеров повы шается. Так, например, в серии измерений, выполненных при 20 С для цис-полибутадиенов было найдено а = 1,1, Ь = 2,0. Показа тель ML-4, 20° С хорошо отражает технологические свойства линей ных полибутадиенов, в частности, вальцуемость резиновых смесей которая при фиксированной молекулярной массе исходных каучу ков определяется их индексом полидисперсности [21], [c.81]

    Набор пласто-Эластических показателей позйоляет прибли женно судить о молекулярном строении каучуков и, соответственно, о комплексе технологических свойств резиновых смесей. Вместе с этим, отдельные показатели, основанные на измерении эффективной вязкости сырых каучуков, скорее характеризуют их качество с точки зрения стандартности, нежели технологические свойства смесей. [c.83]

    В присутствии катализатора, состоящего из бис(1,3-диметилал-лилникельхлорида) и п-хлоранила, получаются высокомолекулярные полибутадиены, содержащие до 98% цыс-1,4-звеньев. Эти полимеры характеризуются высокими физико-механическими показателями и хорошими технологическими свойствами. Их синтез разработан в СССР и запатентован во многих странах. [c.103]

    Вследствие узкого ММР технологические свойства СКДЛ, оцениваемые по критическому зазору вальцов, при котором резиновая смесь начинает шубить , становятся неудовлетворительными уже при Л1 = 10 Вместе с тем резины на основе каучука с такой низкой М обладают более высокими физико-механическими показателями, чем другие бутадиеновые каучуки, что обусловливается высокой плотностью эластически эффективной части сетки, связанной с более узким ММР каучука по сравнению, например, с СКД [65]. [c.188]

    Для использования в шинной иромышленности рекомендуется полимер с AI (3 3,5) 10 и MwlMn = 2,5—3,0 с удовлетворительными физико-механическими и технологическими свойствами. Такой тип каучука в настоящее время освоен промышленностью. Резины, полученные на его основе, характеризуются высоким сопротивлением разрыву и эластичностью как при 20, так и при 100 °С. Кроме того, для них характерна высокая износостойкость и морозостойкость. По этим показателям вулканизаты на основе СКД значительно превосходят вулканизаты из НК. Вместе с тем для изготовления, например, целого ряда резинотехнических изделий, кабелей тонкого сечения, резиновой обуви СКД с таким ММР неприемлем. Для удовлетворения потребителей таких изделий освоен выпуск каучука с MJMn = 4,0 5,0. [c.191]

    По технологическим свойствам СКД-2 и СКД-3 обладают существенным преимуществом по сравнению с СКД и главным -0б 10м СКДЛ. Определенную роль в этом играет их более широкое ММР (см. табл. 3), однако и при равной полидисперсности сравниваемых каучуков указанное различие в вальцуемости резиновых смесей сохраняется. Причиной этому оказалась заметная склонность СКД-2 и СКД-3 к деструкции при обработке на холодных (25—30°С) вальцах (рис. 5). [c.193]

    Вполне обоснованный выбор именно этих эластомеров [12] как основы производства шин и резинотехнических изделий связан с ценным комплексом свойств полиизопрена и полибутаднена и их композиций хорошими технологическими свойствами сырых резиновых смесей, отличными упруго-гистерезисными и прочностными свойствами, высоким сопротивлением раздиру и износу, тем-пературостойкостью, низкой температурой стеклования и др. [c.225]

    Бутадиен-стирольные и а-метилстирольные каучуки с небольшим содержанием связанного стирола (а-метилстирола) относятся к высокоэластичным и морозостойким каучукам. Каучук СКМС-Ю имеет сопротивление разрыву 19—22 МПа, относительное удлинение 500—700%, эластичность 40—47 и коэффициент морозостойкости 0,30—0,36 при удлинении 100% и температуре —45°С. Бутадиен-а-метилстирольный каучук СКМС-50 с высоким содержанием связанного а-метилстирола обладает хорошими технологическими свойствами, имеет oпpotивлeниe разрыву 22—28 МПа и относительное удлинение 450—550%. [c.267]

    При синтезе бутадиен-стирольных и изопрен-стирольных термоэластопластов сначала полимеризуют стирол при 20—50 °С, затем бутадиен или изопрен при 20—60°С и снова стирол при 20— 80 °С [7]. В некоторых случаях для улучшения технологических свойств термоэластопластов в качестве инициатора используют смесь моно- и дилитийорганических соединений [8]. [c.285]

    Прекрасные технологические свойства и способность к высокому наполнению, когезионная прочность и клейкость резиновых смесей, хорошие физико-механические показатели и износостой- [c.325]


Смотреть страницы где упоминается термин Технологические свойства: [c.73]    [c.93]    [c.207]    [c.280]    [c.312]   
Свойства редких элементов (1953) -- [ c.40 , c.51 , c.62 , c.73 , c.82 , c.88 , c.115 , c.126 , c.139 , c.140 , c.148 , c.153 , c.162 , c.215 , c.248 , c.261 , c.330 , c.338 , c.343 ]

Справочник по обогащению руд обогатительные фабрики Издание 2 (1984) -- [ c.0 ]

Справочник по обогащению руд обогатительные фабрики Издание 2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Автоматизация технологических процессов производства портландцемента (В. В. Тимашев) Приборы для измерения физических и химических свойств веществ

Акт проверки технологических свойств электродов

Анализ влияния технологических параметров на динамические свойства САР экзотермического процесса

Анализ технологических свойств сырья

Аппаратурно-технологические схемы и их системные свойства

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА ВЫХОД, СОСТАВ, СТРУКТУРУ И СВОЙСТВА ПРОДУКТОВ ПРОЦЕССА ТЕРМОКАТАЛИТИЧЕСКОГО РАЗЛОЖЕНИЯ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ

Взаимосвязь технологических параметров процесса со свойствами отложений меди и их структурой

Взаимосвязь технологических параметров со свойствами никелевых отложений

Влитие технологических параметров иа свойства графита

Влияние кристаллизации на технологические свойства каучуков и сырых резиновых смесей

Влияние многократной переработки на технологические свойства термопластов

Влияние различных технологических факторов на физико-химические свойства кокса

Влияние свойств целлюлозы и отдельных технологических операций на состояние ксантогената в растворе

Влияние технологических параметров на выход, состав, структуру и свойства эпитаксиальных углеродных отложений

Влияние технологических параметров на механические и электрические свойства ДСК-электродов

Влияние технологических параметров на свойства полиэтиленцеллофана

Влияние технологических параметров электроосаждения на структуру и свойства покрытий

Влияние технологических свойств пресс-материалов, условий переработки и внешних факторов на свойства пресс-изделий

Влияние технологических факторов на свойства полиэтиленовых покрытий

Влияние фосфатов на технологические свойства керамических шликеров

Влияние фундаментальных характеристик и параметров процессов переработки полимеров на их технологические свойства

Воробьев А.Ф., Щербаков В.В., Дуров В.А. Комплексное исследование термодинамических свойств неводных и смешанных растворов технологического назначения

Зависимость между химическим строением и технологическими свойствами

Задание . Определить технологические свойства компаундов термо

И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ УКРАИНЫ Краткая геологическая справка о нефтяных месторождениях Украины

ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ ИНГИБИТОРОВ КОРРОЗИИ

Изменение технологических свойств углей при окислении

Изопреновый каучук технологические свойства

Испытание лакокрасочных материалов Определение технологических свойств лакокрасочных материалов

Исследование и оценка технологических свойств полимеров

Исследование процессов формования, структурно-механических и технологических свойств пластмасс,- И. Ф Канавец

Каучук технологические свойства

Каучук физико-химические и технологические свойства

Классификация технологических свойств полимеров

Комплексный метод количественного изучения химико-технологических свойств осадков

Королев И.В., Ларина Т.А., Васильева Р.В Влияние концентрации минерального порошка на технологические свойства наполненного битума

Краски нанесение кистью оценка технологических свойств

Кремнийорганические пластмасс технологические свойства

Магнитная обработка как средство изменения технологических свойств водно-дисперсных систем

Методы экспериментального исследования динамических свойств химико-технологических объектов

Механические и технологические свойства

Механические и технологические свойства сталей

Модификаторы для улучшения технологических свойств резиновых смесей

Области применения пластмасс, технологические свойства и методы их определения

Общие сведения о критериях эффективности и характеристических свойствах химико-технологических систем

Оксредметрия при контроле технологических процессов Особенности измерений в сложных средах. Свойства некоторых неорганических окислительно-восстановительных систем

Определение влияния основных технологических факторов на свойства получаемого материала

Определение поверхностно-активных свойств технологических растворов

Оптимизация состава сырьевой смеси на основе фосфогипса для производства стеновых изделий способом полусухого прессования. Влияние основных технологических факторов на свойства получаемого материала

Основные направления реализации технологических свойств

Основные физико-химические свойства твердых нефтяных битумов I Технологический процесс окисления нефтяных остатков

Переработка каучуков и резиновых технологические свойства каучуков

Печатно-технологические свойства растворов ВМС нефти в минеральных маслах

Показатели технологических свойств буровых растворов

Полиэфиры ненасыщенные технологические свойства

Пресс-материалы технологические свойства

Продукты технологические свойства

Противопожарная защита технологические свойства

Регулирование технологических свойств буровых растворов на водной основе

Свойства потока сигналов о нарушениях технологических параметров

Свойства раствора и технологические характеристики

Свойства эксплуатационные и технологические

Сроки применения, влияние на урожай и технологические свойства волокна

ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА ПЛАСТИЧЕСКИХ

Таблицы технологических свойств ускорителей вулканизации фирмы Байер

Таболина Л.С., Посадов Л.А., Розенталь Д.А. Корреляция свойств окисленных битумов с составом исходных гудронов и технологическими условиями их получения

Термопласты технологические свойства

Технологические и пленкообразующие свойства наполненных составов

Технологические и физико-механические свойства молибдена

Технологические масла свойства

Технологические режимы Физико-химические свойства растворителей

Технологические свойства аммиака

Технологические свойства железистых кварцитов

Технологические свойства и методы их определения

Технологические свойства и применение

Технологические свойства и применение ацетилена

Технологические свойства и способы соединения циркония и его спла- I Применение циркония

Технологические свойства и химическое строение

Технологические свойства иттрия

Технологические свойства каучуков

Технологические свойства каучуков вязкость каучуков и смесей

Технологические свойства каучуков и резин

Технологические свойства каучуков или смеси после обработки

Технологические свойства каучуков резиновых смесей

Технологические свойства каучуков состояние поверхности каучука

Технологические свойства каучуков усадка смесей после обработки

Технологические свойства каучуков характер взаимодействия с рабочими поверхностями перерабатывающего оборудования

Технологические свойства литьевых термопластов. Подготовка сырья

Технологические свойства металло

Технологические свойства металлов

Технологические свойства нефтей Украины

Технологические свойства обратных эмульсий, их следование и регулирование

Технологические свойства озона

Технологические свойства перерабатываемых материалов

Технологические свойства пищевых сред

Технологические свойства пластмас

Технологические свойства пластмасс

Технологические свойства поверхностноактивных вещест

Технологические свойства поверхностноактивных веществ

Технологические свойства полиамидов

Технологические свойства полимеро

Технологические свойства порошков

Технологические свойства пресс-материалов на основе аминосмол и методы их определения

Технологические свойства прессматериалов

Технологические свойства реактопластов

Технологические свойства реактопластов и методы их определения — Канавец

Технологические свойства резиновых смесей

Технологические свойства сплавов титана

Технологические свойства стеклянной нити

Технологические свойства угля

Технологические свойства ускорителей

Технологические свойства хлора

Технологические свойства экструзионных термопластов. Подготовка сырья

Технологические свойства, химический и структурный анализ. Дефектоскопия

Технологические факторы, регулирующие образование частиц карбонильного железа с заданными свойствами

Технологическое обеспечение физико-механических свойств поверхности

Требования к технологическим свойствам шинных резиновых смесей

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ОПТИМИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ СВОЙСТВ ПЕН

Физико-механические и технологические свойства меди

Физико-механические и технологические свойства низкоуглеродистой стали (армко-железа)

Физико-механические и технологические свойства никеля

Физико-механические и технологические свойства сплавов титана

Физико-химические и технологические свойства карбамидный смол

Физико-химические и технологические свойства каучуков, применяемых для эластичных магнитных материалов

Физико-химические и технологические свойства твердых дисперсных систем

Физико-химические и технологические свойства текстильно-вспомогательных веществ и композиций

Физические и технологические свойства

Физические и технологические свойства полимеров

Формирование и технологическое значение физико-химических свойств кокса

Функциональные и технологические свойства

Химико-технологические системы характеристические свойства

Эксплуатационные свойства химико-технологической систеУправление химическим производством



© 2025 chem21.info Реклама на сайте