Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические свойства аммиака

    Сначала рассматривают вариант IV, поскольку тогда решается принципиальный вопрос об использовании математической модели при автоматической оптимизации. В данном случае могут использоваться как активные, так и пассивные методы поиска оптимума на объекте. Известно, что химико-технологические процессы, — как объекты управления — (в том числе и рассмотренные два реактора синтеза аммиака) обладают такими динамическими свойствами по сравнению со статическими свойствами возмущающих воздействий, что пассивные методы поиска оптимума фактически не применимы. Остаются активные методы поиска (экстремальные системы). Ниже будет показано, что и эти методы прямого поиска на объекте не дают нужного экономического эффекта из-за динамических свойств объекта управления и статических свойств возмущающих воздействий. [c.369]


    Целесообразность выбора рабочего вещества определяется его термодинамическими свойствами, а также экономическими и эксплуатационными показателями установки в целом. При выборе учитывают возможность использования технологических продуктов в качестве хладагентов. Наиболее распространены такие рабочие вещества, как аммиак, R12, R22, пропан, пропилен, этан, этилен и др. В качестве промежуточных хладоносителей используют воду, водные растворы хлористого натрия, хлористого кальция, кальциевой селитры, этиленгликоль, R30, R11. Около 20% искусственного холода в химической промышленности затрачивается на охлаждение воды. [c.259]

    Технологические свойства аммиака [c.187]

    Факельная система НПЗ предназначена для максимального улавливания технологических выбросов огне- и взрывоопасных паров и газов. Факельная система состоит из общей факельной системы предприятия и отдельных факельных систем, обслуживающих специальные производства и предназначенных для утилизации или сжигания газов и паров со специфическими свойствами (аммиака, сероводорода и т.п.). [c.279]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]


    Латуни в условиях эксплуатации склонны к коррозионному растрескиванию. Это явление наблюдается при наличии в атмосфере аммиака или сернистого ангидрида, а также в растворах, содержащих аммиак, комплексные аммиачные или цианистые соли. Дополнительное легирование латуней небольшими добавками кремния (0,5 %) повышает их стойкость к коррозионному растрескиванию. Кремнистые латуни, содержащие не более 1 %> 81 при 20 %> 2п, обладают хорошими механическими и технологическими свойствами. [c.206]

    Физико-химические свойства газов и жидкостей Производство технологических газов Очистка природного и технологических газов Синтез аммиака Компрессорные установки агрегатов синтеза аммиака Принципы автоматизации производства аммиака Основные химико-технологические расчеты Теплоэнергетика [c.512]

    Жидкий аммиак получают из аммиачного производства (описание свойств аммиака и способов получения см. гл. П1) углекислоту получают из газов известково-обжигательных печей или экспанзерных газов аммиачного производства, которые получаются при очистке технологического газа, подаваемого в цех синтеза аммиака. [c.159]

    Медноцинковые сплавы-латуни обладают хорошими механическими и технологическими свойствами. Добавки олова, марганца, никеля, алюминия, железа и др. сообщают сплавам повышенные механические и физические свойства. Латуни достаточно устойчивы в отношении общей коррозии, но в напряженном состоянии они весьма чувствительны к коррозионному растрескиванию. Сплавы эти при хранении на воздухе, и особенно при воздействии на них паров аммиака, легко разрушаются, поэтому изделия из них необходимо подвергать отпуску при температуре 280—300° С. Низкотемпературный отпуск, не понижая механических свойств латуней, снимает внутренние напряжения, что в значительной степени предохраняет эти сплавы от коррозионного растрескивания. [c.16]

    В первом томе справочника под общей редакцией Е. Я. Мельникова приведены физико-химические свойства газообразных и жидких веществ, применяемых и получаемых на предприятиях азотной промышленности. Описаны различные методы получения и очистки технологических газов (азото-водородной смеси, синтез-газа). Рассмотрены физикохимические основы процессов синтеза аммиака и метанола, промышленные схемы и принципы автоматизации их производства даны некоторые методы технологических расчетов, приведены характеристики катализаторов, описана применяемая аппаратура. [c.4]

    Путем специальной обработки (отделения продуктов уплотнения — так называемой регенерации масел) свойства обоих масел могут быть восстановлены и стабилизированы. Технологический процесс абсорбции бензольных углеводородов нарушается при неполной сорбции аммиака из газа, поэтому категорически запрещается улавливать бензольные углеводороды, если не работает или неудовлетворительно работает система улавливания аммиака. [c.166]

    На основе использования адсорбционно-каталитических свойств углеродных материалов разработаны, апробированы в опытном масштабе и предложены для промышленного применения новые эффективные процессы очистки сточных вод и технологических растворов от сульфида натрия, фенола, аммиака, анилина и других компонентов. [c.87]

    Технологическая (или рабочая) машина представляет собой комплекс механизмов, предназначенных для выполнения технологического процесса в соответствии с заданной программой. В ходе технологического процесса под воздействием рабочих органов машины изменяются качественные показатели предмета труда (физические свойства, форма, положение) при этом затрачивается полезная работа. В машинах химических производств технологический про-, цесс обычно носит сложный характер на предмет труда помимо механического воздействия может накладываться какой-либо (или совокупность) типовой процесс химической технологии — химическое превращение, межфазный массообмен, нагрев, изменение агрегатного (фазового) состояния вещества и др. Например, в аммо-низаторах-грануляторах происходит не только процесс гранулирования окатыванием,. , е. получение сферических гранул из мелкодисперсного материала перемещением его частиц во вращающемся барабане, но и химическая реакция — нейтрализация жидким аммиаком фосфорной кислоты, содержащейся в пульпе, которая подается в гранулятор, а также сушка материала (тепломассообменный процесс). [c.7]

    Следует отметить, что технологические и физико-механические свойства растворных каучуков зависят от содержания связанного стирола. Так, блоксополимеры при содержании стирола в концевом блоке 10% и вязкости по Муни 30—35 относятся к новому классу каучуков — термоэластопластам. Наполненные техническим углеродом с меси на основе таких полимеров могут перерабатываться методом литья под давлением. Термоэластопласты обладают высокой стойкостью к воде, щелочам, кислотам, спиртам, аммиаку, ограниченно стойки к маслам и не стойки к бензину, толуолу, ацетону. [c.187]


    Справочник азотчика Физико-химические свойства газов и жидкостей. Производство технологических газов. Очистка технологических газов. Синтез аммиака. — 2-е изд., перераб., М. Химия, 1986 г. — 512 с., ил. [c.4]

    На скорость реакции поликонденсации влияет концентрация мономеров и температурный режим С увеличением концентрации мономеров и повышением температуры скорость реакции возрастает При этом становится более вероятным взаимодействие растущих цепей макромолекул, а следовательно, и увеличение молекулярной массы полимера Однако в этих условиях ускоряются процессы деполимеризации низкомолекулярными веществами (избыточным мономером, низкомолекулярным продуктом реакции), а также возможно изменение химической природы функциональных групп (декарбоксилирование, окисление аминогрупп, отщепление аммиака и др ) Но повышение температуры способствует также и более быстрому удалению низкомолекулярного продукта реакции Таким образом, от выбора рецептуры исходной смеси мономеров и технологического режима зависят свойства получаемого полимера [c.25]

    Однако, рассматривая принципиальное влияние различных внешних силовых полей на физико-химические свойства вещества, влияющие на направление и выход технологических процессов, нельзя не обратить внимание и на чисто технологические факторы. Использование перечисленных выше принципов дает возможность расширить номенклатуру исходных сырьевых материалов, в частности использовать летучие соединения (хлориды, фториды, йодиды, гидриды и т. п.) таких элементов, как кремний, бор, титан, ниобий, тантал, уран, а также летучие конвертирующие реагенты (углеводороды, аммиак и т.п.). Поскольку большинство процессов, основанных на указанных принципах, являются безинерционными или малоинерционными, режим работы (непрерывный, дискретно-непрерывный, периодический) определяется из соображений либо необходимости, либо удобства. [c.326]

    Выбор коррозионностойких материалов для условий синтеза карбамида чрезвычайно труден. Дело в том, что стойкость материалов определяется здесь не только свойствами карбамида, но и параметрами технологического процесса температурой, давлением, количеством избыточного аммиака, содержанием сернистых примесей в СОг, концентрацией кислорода, подаваемого для пассивации сталей и рядом других факторов. [c.132]

    В табл. 27 приведены пределы взрываемости и токсические свойства веществ, участвующих в процессе получения технологического газа для производства аммиака. [c.148]

    Производство химической продукции для сельского хозяйства. Научно-исследовательские разработки в этой области направляются на создание новых видов высококонцентрированных сложных и комплексных минеральных удобрений с улучшенными физическими свойствами разработку и освоение экономичных технологических процессов производства минеральных удобрений и сырья для них. Значительно возрастут мощности по производству аммиака (до 500 тыс. т/год), аммиачной селитры (до 1 млн. т), карбамида  [c.223]

    В отличие от описанных работ Андерсена и др., в исследованиях Лебедева с сотр. [31, 32] изучались причины ухудшения технологических свойств полихлоропреновых латексов при старении, в частности уменьшение относительного удлинения сырого геля, которое коррелирует с браком метеорологических баллонов в процессе их производства за счет разрывов на стадии снятия с форм [33], Объектами исследования были л-полимерные латексы, син-тег.нрозанные главным образом без регулятора молекулярной массы (по рецепту наирит Л-4 или с небольшими отклонениями от него), и стабилизированные аммиаком. Старение осуществлялось при разных температурах (20—70°С) в контакте с воздухом. Основные выводы, сделанные авторами этих работ, сводятся к следующему. [c.232]

    Сваривается удовлетворительно, но рекомендуется термическая обработка шва. Применяется в термически обработанном состоянии (после закалки при температуре 950—1050° и отпуска). Выпускается в виде проката и труб Применяется для арматуры, атмосфере, а также для турбин, соприкасающихся воздухом и аммиаком для клапанов гидравлических прессов, резервуаров для хранения растворов медного купороса Технологические свойства и применение те же, что и марки 1X13, но для деталей, работающих при более высоких температурах и повышенных нагрузках Не закаливается, сваривается удовлетворительно термическая обработка после сварки необходима Применяется для аппаратуры и трубопроводов азотной кислоты и нитрозных газов температурный предел применения до 950° [c.115]

    Другой метод использования остатка глюкозы в качестве гидрофильной группы молекул поверхностноактивных веществ заключается в превращении ее в глюкозамин или N-алкилглюкозамин. Глюкозамины получают путем гидрирования смеси глюкозы с аммиаком или низшими первичными аминами. Ацилированные жирными кислотами глюкозамины были описаны как неионогенные поверхностноактивные соединения относительно давно, но до сих пор они не производятся в промышленном масштабе. Последние работы показали, что эти вещества гораздо более растворимы в воде, чем считалось раньше, и что они обладают рядом ценных технологических свойств. Недавно была выпущена в продажу опытная партия.  [c.102]

    Справочник азотчмка Физико-химические свойства газов и жидкостей. Производство технологических газов. Очистка технологических газов. Синтез аммиака./ГИАП. — [c.464]

    В качестве примеров производств химической промышленности, на базе которых и рассматривается экспертная информация, являются производства метанола, аммиака и высших спиртов [2,3]. Технологические объекты управления (ТОУ) подобных производств имеют, как правило, несколько возможных каналов управления, причём эти каналы управления характеризуются различными статическими и дш1амическими свойствами. При решении задачи автоматизации ТОУ классическим подходом к выбору канала управления является подход, при котором выбирается тот канал управления, который обладает лучшими динамическими свойствами. Но такой подход часто не даёт правильного выбора, так как не учитывает ограничения, наложенные на управляющие переменные, которые резко снижают качество управления. Таким образом, анализ необходимо проводить как с учётом динамических свойств канатов управле- [c.208]

    Выбор конкретных мер защиты в каждом частном случае олреде-ляется их технологической и экономической целесообразностью, Одна из таких мер защиты заключается в применении ингибиторов коррозии. Ингибиторы коррозии — это такие вещества, введение небольших количеств которых в коррозионную среду, в упаковочные средства и во временные защитные покрытия (смазки, лаки и краски, полимеры и другие неметаллические пленки) снижает скорость коррозии и уменьшает ее вредные последствия [4 30 48]. Защитное действие ингибиторов связано с изменениями в состоянии поверхности защищаемого металла и в кинетике частных реакций, лежащих в основе коррозионного процесса. Ингибиторы вводятся в настолько малых количествах, что в отличие от нейтрализаторов, деаэраторов, осадителей и других регуляторов свойств среды практически не оказывают на нее влияния. Иногда ингибиторы (например амины) изменяют pH среды и поэтому могут рассматриваться как регуляторы ее свойств, а некоторые регуляторы свойств среды (например растворы аммиака) проявляют ингибирующие свойства за счет торможения ими катодной реакции при изменении pH, но это лишь исключения из общего правила. [c.9]

    Технологические схемы процессов получения низкомолекулярных олиго-и полиизобутиленов в России имеют некоторые особенности, в частности они отличаются конструкцией реакторов-полимеризаторов, а также типом каталитической системы (AI I3 в хлорэтиле или в ксилольной фракции углеводородов). Если обычно используются реакторы, в которых теплосъем осуществляется преимущественно за счет внутреннего теплосьема - испарения компонентов сырьевой смеси (кипения), то в России, как правило, термостатирование производится за счет интенсивной теплопередачи через стенки или охлаждаю-1цие поверхности к циркулирующему агенту (аммиак, этилен), что, естественно, менее эффективно. Предусмотрена возможность варьирования в определенных пределах технологического режима ведения процесса (давление, температура, расход катализатора и т.д.), что позволяет получать продукты с достаточно разнообразными эксплуатационными свойствами [6 . [c.300]

    Английская фирма Propane — Spenser Ltd ввела в описанную выше схему некоторые усовершенствования с целью улучшения физических свойств готового продукта и технологических показателей. Исходным сырьем являются термическая фосфорная кислота (54% Р2О5), аммиак, плав нитрата аммония (35% N) и хлористый калий (60% К2О). В фосфорную кислоту перед нейтрализацией вводится фосфоритная мука из расчета —17 кг на 1 г продукта для улучшения грануляции. Для этой же цели грануляция в аммонизаторе-грануляторе производится в присутствии водяного пара. Сушка проводится в две ступени последовательно в двух сушильных барабанах. В первом гранулы высушиваются с 4 до [c.604]

    Если степени свободы аппаратурно-процессной единицы перед реактором заняты составом и физическими свойствами поступающего газа, то остается еще три свободно выбираемых технологических переменных. Другими словами, базовая система аппаратурно-процессной единицы содержит три параметра. С точки зрения регулирования процесса наиболее целесообразно было бы выбрать в качестве этих трех параметров производительность компрессора исходной газовой смеси (в точке 4), производительность рециркуляционного компрессора (в точке В) и температуру в так называемом холодном сепараторе. Однако по соображениям удобства техники расчета мы выберем другую базовую систему. Ее параметрами будут гд, го, 2е, которые обозначают последовательно мольнук> долю инертных компонентов в исходной смеси перед реактором, мольную долю> аммиака в потоке псходной смеси перед реактором и мольную долю аммиака в потоке газа после реактора. [c.335]

    Приведенные схемы автоматизации охватывают отдельные стадии химико-технологического процесса обработки воды. Уже их использование позволяет получить значительную экономию в расходе реагентов и улучшить качество очистки воды. Гораздо большей экономической эффективности можно достигнуть при комплексной автоматизации станций водоподготовки с использованием централизованной системы сбора и обработки информации. Это связано с большим количеством контролируемых объектов, где режимы обработки могут быть разными, огромным объемом информации, необходимой для научно обоснованного управления технологическими сооружениями, а также тем, что химико-технологические процессы взаимосвязаны и для их оптимизации необходимо воздействие на ряд контуров системы. Выше было показано, что на процессы коагуляции примесей воды влияют количество, состав и свойства окрашенных гуминовых соединений и взвешенных веществ, ионный состав обрабатываемой воды, взаимное влияние применяемых реагентов и пр. Хлорирование воды протекает по-разному в зависимости от наличия в ней легкоокисляющихся примесей, органических веществ и аммиака или его солей. В этом случае оперативный контроль и оптимальное управление процессами водоподготовки могут <зыть успешно реализованы лишь при использовании управляющих вычислительных машин (УВМ). [c.210]

    ОГ Г" переходит в нелинейную, близкую к квадратичной. В частности, для ряда жидких технологических сред (конденсаты, аммиачная вода, жидкий аммиак) при соогвегствующих значениях параметров очистки и свойств очищаемьрс сред 1 р=5-15 см/с, а для газообразных сред, например газообразного аммиака и пара Ур=3-5 м/с (см. рис. 2.21). [c.72]

    В настоящее время на предприятиях по производству слабой азотной кислоты отходящие газы очищают преимущественно каталитическим восстановлением оксидов азота природным газом, водородом, оксидом углерода и аммиаком. Эффективность этого процесса во многом определяется свойствами катализатора — активностью, механической прочностью, термостойкостью, гидравлическим сопротивлением и др. Актуальная задача, стоящая перед разработчиками, — создание дешевых катализаторов путем применения эффективных носителей. Американской фирме Каталитик комбашн корпорейшн удалось создать катализаторы на основе металлов платиновой группы, нанесенных на шарики из оксида алюминия, керамические шарики, гофрированную ленту их хромоникелевого сплава, керамические соты, работающие годами в довольно жестких технологических условиях. [c.22]

    Технологические схемы отечественных процессов получения низкомолекулярных олиго- и полиизобутиленов имеют некоторые особенности, в частности они отличаются конструкцией реакторов-полимеризаторов и отводом тепла реакции. Если зарубежные фирмы используют реакторы, в которых теплосъем осуществляется преимущественно, за счет испарения компонентов сырьевой смеси, то в отечественных аппаратах термостатирование производится за счет интенсивной теплопередачи через Стенки или охлаждающие поверхности к циркулирующему агенту (аммиак, этилен). В отечественных процессах предусмотрена возможность варьирования в определенных пределах технологического режима (давление, температура, расход катализатора и т.д.), что позволяет нолучать продукты с достаточно разнообразными эксплуатационными свойствами. Зарубежные процессы рассчитаны как правило на переработку только одного вида сырья в полимеры с определенными свойствами [253]. Промышленный синтез ПИБ с М = 10 000-20000 предусматривает получение концентрата полимеров в минеральном масле (вязкостные присадки П-10 и П-20) (рис. 4.23). Сырье после усреднения подается в ректификационную колонну, где при 550-580 кПа, температурах 328-333 К (куб) и 318-328 К (верх колонны) происходит отделение тяжелых углеводородов С5 и выше. Ректификат, содержащий до 45% (масс.) изобутилена, охлаждается и подвергается осушке в колонне, заполненной на 2/3 объема a lj и на 1/3-твердым NaOH. Окончательная сушка сырья производится в холодильнике с фильтром для отделения кристаллов воды (258-263 К). [c.155]

    Ректификация. Метод ректификации также основан на свойстве сульфида и гидросульфида аммония разлагаться при нагреве с выделением сероводорода и аммиака. Раздельное получение чистого сероводорода и чистого аммиака вполне объясйимо, так как эти вещества имеют различные температуры кипения —33, 35 °С для сероводорода и —60,7°С для аммиака) и значит разные упругости паров при любой заданной температуре. В ряде зарубежных НПЗ фирмы СЬеугоп Кезеаге1 (США) для обезвреживания наиболее концентрированных технологических конденсатов применяют ректификацию с раздельным выделением сероводорода и аммиака в виде товарных продуктов [109]. По данным фирмы, степень чистоты сероводорода составляет 99,5%, а аммиака 99,9%. Метод наиболее эффективен при содержании сульфидов и гидросульфидов в водах более 10 г/л. [c.163]

    Поликонденсацией называют процесс образования высокохмолекулярного вещества в результате соединения между собой большого числа или разных молекул низкомолекулярных веществ, происходящий с выделением побочных продуктов — воды, хлористого водорода, аммиака и низкомолекулярных веществ. При необходимости один и тот же полимер можно получить полимеризацией и поликонденсацией. Реакциями полимеризации и поликоиденсации из низкомолекулярных соединений получают синтетические смолы. Однако для изменения свойств синтетических смол осуществляют замещение подвижных атомов вдоль основной цепи атомными группировками или целыми цепями. Полученные таким образом полимеры называют привитыми или графтполимерами, а процесс получения — привитой гюлимеризацией. Применяя различные комбинации органических веществ и технологические приемы, можно получать полимеры с различными свойствами. [c.46]

    Природные поверхностные воды (как и подземные воды зоны активного водообмена) но своему составу, как правило, вполне пригодны непосредственно для питьевых целей. Улучшение органолептических свойств легко достигается на водопроводных станциях процессами коагуляции, фильтрации и окисления, вследствие чего для незагрязненных природных водоисточников объем аналитического контроля мог бы ограничиваться определением мутности (прозрачности) и цветности воды. Требования к качеству воды со стороны промышленных водопользователей зависят от особенностей технологического использования воды, которые и определяют минимально необходимый аналитический контроль исходной воды. Наиболее типично определение состава и качества воды [3]. В водо определяют жесткость, кислотность, мутность, pH, цветность, ш елочность, удельную электропроводность, масла, а также содержание бора, фтора, железа, кальция, натрия, магния, марганца, никеля, меди, свинца, цинка, хрома(VI), орто- и полифосфатов, нитрат-, нитрит-, сульфат-, сульфид-, сульфит-, хлорид-ионов, кремневой кислоты, аммиака, углекислого газа, растворенного кислорода, гидразина, тапнина, лигнина кроме того, определяют вес сухого остатка — до и после фильтрования. [c.8]

    В справочнике под общей редакцией Е. Я. Мельникова приведены основные физико-химические свойства газообразных н жидких веществ, применяемых и получаемых при производстве синтетического аммиака. Рассмотрены теоретические основы процессов и технология получения технологических газов, их очистка в синтез аммиака из азотоводородной смеси. Дана характеристика применяемых катализаторов и абсорбентов. Приведены современные промышленные схемы, применяемое типовое оборудование и принципы автоматизации технологических процессов. [c.4]

    Для решения этих задач в производстве аммиачной селитры внедрен мощный агрегат АС-67 производительностью 1360 т в сутки и приняты новые технологические решения. По новой схеме (рис. УП-6) применяется азотная кислота концентрацией не менее 567о, подогреваемая до 75—80 °С в подогревателе 2 соковым паром нейтрализаторов 3. Газообразный аммиак подогревается до 120—125 °С в подогревателе 1 паровым конденсатом. На входе в нейтрализатор поддерживается давление аммиака 122—304 кПа (1,25—3,1 кгс/см ). Нейтрализация азотной кислоты проводится в нейтрализаторах 3 в слабокислой среде. Сюда же вводятся добавки, улучшающие физические свойства удобрения. [c.127]


Библиография для Технологические свойства аммиака: [c.69]   
Смотреть страницы где упоминается термин Технологические свойства аммиака: [c.756]    [c.397]    [c.359]   
Смотреть главы в:

Справочник по свойствам, методам анализа и очистке воды -> Технологические свойства аммиака




ПОИСК





Смотрите так же термины и статьи:

Аммиак свойства

Технологические свойства



© 2024 chem21.info Реклама на сайте