Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция видимая

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]


    Величина предельной адсорбции на естественном песчанике с нефтью и без нее оказалась значительно выше адсорбции, полученной на кварцевом песке, причем последующая промывка водой в количестве 10 объемов порового пространства показала, что адсорбция совершенно необратима. Необратимый характер адсорбции, видимо, связан с химическим взаимодействием ПАВ с породой, т. е. в реальных условиях имеет место химическая сорбция. [c.49]

    Соединение Т пл. С Адсорбция видимого света Прир источники [c.333]

    Цвет — важнейшее свойство красящих веществ — вызывается адсорбцией части воздействующего на него света. При этом существенно, что человеческий глаз воспринимает только длинноволновую область видимого спектра, т. е. приблизительно от 400 до 800 ммк. В настоящее время известно, что адсорбция света осуществляется благодаря тому, что определенные электроны молекул воспринимают излучаемую световую энергию. Этот процесс характерен не только для адсорбции видимого света, но также и для поглощения в ближней инфракрасной части спектра ( — 1000 ммк, в отдельных случаях до 1500 ммк) и особенно в ультрафиолетовой области (100— 400 ммк). Собственно инфракрасная адсорбция (>2 мк) основана, наоборот, на переходе световой энергии в колебания атомных ядер или атомных групп. [c.238]

    Адсорбцию и дейтерообмен метана и этана, реакции гидрогенолиза этана, гидрогенолиза и изомеризации бутанов и некоторых углеводородов состава Сг исследовали также в присутствии черней Ки, КН и 1г [43]. Более высокую каталитическую активность Ки, КЬ и 1г в реакции гидрогенолиза по сравнению с активностью Р(1, Р1, Со или N1 объясняли легкостью образования прочно связанных (многоцентровая адсорбция) поверхностных частиц, ответственных за гидрогенолиз. Предполагается, что начальная стадия быстрого многократного разрыва С—С-связей молекулы углеводорода сопровождается медленной десорбцией продуктов реакции, которая, по-видимому, и является лимитирующей стадией гидрогенолиза на Ки-, КЬ- и 1г-катализаторах. [c.96]

    Считалось, однако, что излучение пламен слабо взаимодействует со свежей горючей смесью. Молекула кислорода вследствие своей симметрии не обладает дипольным моментом и неактивна в ИК- и видимой областях спектра. Она поглощает излучение в области длин волн 200—175 нм (область адсорбции [c.114]

    Процесс трения вносит в адсорбцию определенные особенности. При трении на величину адсорбции и десорбции помимо обычных факторов существенно влияют такие параметры, как характер обработки поверхности металла и его предварительная деформация, В частности, результаты опытов показали, что величина поверхности, заполненной адсорбированными молекулами присадки, по мере повышения шероховатости изменяется экстремально, имея максимальное значение при шероховатости, характеризуемой выступами размером 0,3—0,4 мм. Это, по-видимому, связано с тем, что число узлов решетки на 1 см шероховатой поверхности оказывается в 1,5—2 раза выше, чем на идеально гладкой. [c.256]


    В пределах данного гомологического ряда адсорбционное сродство является функцией молекулярного веса. На силикагеле преимущественно адсорбируются низшие, а на активированном угле и глиноземе высшие члены ряда. Влияние молекулярного веса на адсорбируемость, по-видимому, значительно больше для адсорбции на активированном угле, чем на глиноземе или на силикагеле [21]. [c.144]

    Так как значительное большинство жидких и твердых углеводородов, которые анализируются по спектрам поглощения, сильно поглощают в ультрафиолетовой области их нужно растворять в прозрачном растворителе. Растворителями, удовлетворяющими этим требованиям, являются 2,2,4-триметилпентан (изооктан), н-гексан, циклогексан, этиловый спирт и др. Другие вещества, как, например, вода, прозрачны (от 220 до 400 т м), но не растворяют углеводородов. Упомянутые растворители даже высокой степени чистоты перед съемкой должны подвергаться обработке для удаления следов поглощающих соединений, например ароматических. Наилучшей обработкой углеводородов, по-видимому, является применение адсорбции на силикагеле (см. АЗТМ — метод В 1017-51). [c.281]

    При температурах выше 800° С скорость конденсации до углерода становится важным фактором и так как углерод катализирует разложение бензола, и быстро покрывающиеся углеродом поверхности реактора, то кинетика реакции усложняется. Однако можно сказать, что реакция является, по-видимому, реакцией второго порядка, причем имеет место адсорбция на поверхности контакта.В полом цилиндре углерод не только отла-,гается в виде прочно пристающего к стенкам налета, но также образуется в струе пара и оседает на дно трубы в виде мягкого объемистого осадка. В связи с этим Айли и Райли [22] дают описание трех форм углерода, отлагающегося при пиролизе углеводородов, включая бензол, при температурах от 800 до 1300° С. Таковыми являются отложения стекловидные, мягкая сажа и волокнистые, располагающиеся зонально от нагревающегося до охлаждающегося концов трубы соответственно. На качество конденсирующихся структур углерода, а также и на их количество преимущественное влияние оказывает температура. [c.96]

    Сланцевые масла, полученные деструктивной перегонкой органического вещества горючих сланцев, керогена, представляют собой сильно реакционноспособные непредельные продукты. В отличие от обычных нефтяных масел они характеризуются тем, что, кроме сернистых и кислородных соединений, содержат также сравнительно большие количества азотистых соединений. Для сланцевого масла, полученного из горючих сланцев месторождения Грин Ривер (Западное Колорадо), найдено содержание в % вес. азота — 2, серы — 0,7 и кислорода — 1,5. Если выразить это в виде соотношения различных типов молекул, то молекулы неуглеводородных компонентов составят 61 % при следующем приблизительном распределении их 60% азотистых, 10% сернистых и 30% кислородных соединений. Из 39% углеводородной части половину составляют олефиновые углеводороды. Хотя избирательной экстракцией или адсорбцией на твердых адсорбентах азотистые и другие подобные им соединения удаляются, но такое удаление указанных соединений проходит только вместе с приблизительно половиной сланцевого масла. По этой причине такие методы, по-видимому, практически не пригодны для улучшения качества сланцевого масла. [c.281]

    Проблема скорости массопередачи в неподвижном слое широко исследовалась первоначально в области абсорбции, адсорбции, дистилляции и экстракции. В реакционных системах твердые гранулы обычно имеют меньшие размеры, чем частицы твердых веществ в упомянутых физических процессах, но аналогичные соотношения, по-видимому, применимы и здесь. Псевдоожиженный слой используется в таких физических процессах, как осушка газов или фракционированная адсорбция углеводородов, но его главное применение—в каталитических реакциях. [c.283]

    По-видимому, в результате адсорбции таких молекул повышается число активных центров с электродонорными свойствами, на которых происходит каталитический гомолиз О—0-связи с образованием радикалов. Адсорбция молекул с электроноакцепторными свойствами, таких, как кислород, диоксид углерода, тетрацианэтилен, снижает иногда до нуля каталитическую активность поверхности оксида металла [330]. Аналогичное действие предварительной адсорбции тех или иных молекул проявляется и при окислении углеводорода с гетерогенным катализатором. Каталитическая активность оксида металла повы- [c.205]

    Механизм плазменной полимеризации сложен и зависит, очевидно, от условий разряда. При электродном разряде адсорбция паров мономера, по-видимому, играет важную роль в осаждении полимера (по крайней мере при полимеризации мономеров винильного типа). Однако в безэлектродном тлеющем разряде определяющее значение имеет процесс полимеризации в плазме. [c.78]


    Первый тип процессов можно назвать адсорбционно-абсорб-ционным. На стадии адсорбции НаЗ поглощается цеолитом, на стадии десорбции он переходит в поток регенерационного газа. Концентрация НгЗ в регенерационном газе становится достаточной для процессов химической абсорбции. Таким образом, т за-диционная схема процесса химической абсорбции кислых газов дополняется адсорбционной установкой, что, естественно, удорожает процесс очистки. С учетом невысоких объемов производства серы процесс становится для газовой промышленности мало экономичным. Пределом применимости этих процессов, видимо, может служить цена серы, которая должна быть несколько ниже мировой. [c.196]

    Когда сорбированный слой очень слабо связан (доказательством чего может служить диапазон давлений и температур, при которых достигается сорбционное равновесие), процесс называется физической адсорбцией . Она характеризуется быстрым и обратимым равновесием с газовой фазой. Измеряемая теплота адсорбции по порядку величины оказывается равной теплоте сжижения адсорбируемого вещества. Интервал температур, в котором осуществляется такая адсорбция, лежит значительно ниже критической температуры адсорбированного вещества. В общем случае этот интервал является довольно большим вблизи точки кипения адсорбированного вещества. Силы, за счет которых происходит физическая адсорбция, ио-видимому, те же самые, что и при сжижении или смешении двух жидкостей, и должны быть отнесены к типу ван-дер-ваальсовых сил. Адсорбируемое вещества может образовывать многомолекулярные слои на поверхности адсорбента при давлениях, достаточно близких к давлению пара адсорбируемого вещества при температуре эксперимента. При давлении, равном давлению насыщающих паров, твердая поверхность просто смачивается жидкостью. [c.536]

    Представленные данные, по-видимому, хорошо согласуются с об.ъясие-нпем на основе простейшей изотермы Ленгмюра. Однако это объяснение ни в коей мере не является обш им. Более часто в широком диапазоне давлений можно найти, что данные нельзя описать с помощью реакции простого порядка или простой изотермы Ленгмюра. В этнх случаях приходится но только учитывать неоднородность поверхности, но и использовать белое сложные уравнения адсорбции. Это обычно позволяет описать экспериментальные данные с помощью простого химического механизма. Однако сложность конечных выражений и большое число параметров сильно усложняют объяснение кинетики реакции. В связи с этим возникает необходимость раздельного получения данных по изотермам и кинетике реакций. Трудност1> этой задачи является одним из главных нренятствип на нути выяснения механизма каталитических реакций. [c.546]

    Если в качестве катализатора использовать никель на кизельгуре, С2Н4 очень слабо ингибирует обмен Нг—Вг [36]. Это, по-видимому, свидетельствует о том, что адсорбция на такого рода катализаторах отличается от адсорбции на чистых металлах. [c.548]

    Водяной пар снижает, по-видимому, скорость адсорбции сернистых соединений, которые отравляют катализатор [2371. На ядратацию требуется приблизительно 0,4% водяного пара от веса циркулирующего природного пылевидного катализатора [2381. [c.41]

    Таким образом, рассматриваемый механизм принципиально близок к механизму Руни — Кемболла, хотя и отличается от последнего детализацией промежуточно адсорбированных структур. Как отмечалось выше [42— 45], водород считают необходимым компонентом протекания конфигурационной изомеризации, однако рассматриваемый механизм недостаточно убедительно обосновывает это утверждение. Действительно, если адсорбция и превращение цис-адсорбированной формы в транс-форму (стадии 1 и 2) являются медленными стадиями, то быстрая стадия (3) — гидрирование — могла бы, по-видимому, идти за счет водорода, образовавшегося при диссоциативной адсорбции молекулы. В таком случае не было бы необходимости подавать водород в зону реакции извне. [c.78]

    СЯ [158] в определенной неравноценности двух связей а (С-1—С-5 и С-2—С-3) в начальный период адсорбции. Действительно, из-за цис-расположения СНз-групп при атомах С-1 и С-4 кольца связь С-1—С-5, по-видимому, аналогична связи а" в qw -1,3-диметилциклопентане. Вторая связь а (между атомами С-2 и С-3) расположена при неадсорбированнон в начальный момент реакции СНз-группе, находящейся в объеме над катализатором. То же самое относится и к обеим связям а" одна из них (С-4—С-5) аналогична связи а" у цис-1,3-диметилциклопентана, а вторая (С-3—С-4) сходна, по-видимому, со связью а в метилциклопентане. В стереоизомере VIII благодаря пространственной симметрии молекулы равноценны обе связи а, а также обе связи а". [c.147]

    Таким образом, принимая во внимание современные представления о напряженности средних циклов и полученный экспериментальный материал по их каталитическим преврашениям, можно сделать вывод, что внутримолекулярные реакции s- и Сб-дегидроциклизации с образованием бициклических углеводородов энергетически выгодны для 8—11-членных циклоалканов, поскольку при этом существенно уменьшается трансаннулярное напряжение. В случае конкурирующей реакции — реакции гидрогенолиза — главную роль играет, по-видимому, не напряженность в исходной молекуле, а напряжение, возникающее в переходном комплексе при адсорбции молекулы циклоалкана на поверхности катализатора [197]. Поэтому в общем случае нельзя считать выход н-алка-нов мерой реакционной способности циклоалканов. Это становится тем более очевидным, если учесть, что гидрогенолиз различных циклоалканов в присутствии Pt/ описывается разными кинетическими уравнениями [143, 151, 201, 202].  [c.159]

    Естественно, сказанным не ограничиваются все факторы, могущие влиять на селективность протекания Сз-дегидроцпклизации алканов. Не исключено, что на предпочтительную адсорбцию конформации Б по сравнению с конформацией А в условиях проточного метода влияют и различия электронных плотностей у первичных (С-1, С-7) и вторичных (С-2, С-6) углеродных атомов в молекуле н-гептана. Возможно также, что при адсорбции некоторый вклад вносят различия в ван-дер-ваальсовых объемах адсорбирующихся частей молекулы (СНз-группа в случае конформации Б и СНо-группа для конформации А). Однако на данном этапе исследования нам представляется, что наибольшую роль в различной селективности Сз-дегидроциклизации по направлениям 1 я 2, ио-видимому, играют факторы, связанные с различным характером покрытия поверхности катализатора реагентами. [c.218]

    Два важных свойства адсорбента—коэффициент разделения а и скорость адсорбции — в бсльшой степени зависят от среднего диаметра пор. Избирательное действие адсорбента проявляется только по отношению к тому слою молекул, который прилегает к его поверхности. Отсюда ясна зависимость избирательной адсорбции от удельной поверхности. По-видимому, жидкость, находящаяся в центре поры, имеет тот же состав, что и жидкость вне адсорбента. Вследствие этого величина коэффициента разделения должна убывать по мере увеличения диаметра поры. С другой стороны, увеличение диаметра поры благоприятствует увеличению скорости адсорбции. Для некоторых сортов силикагеля величина среднего диаметра поры только немного больше утроенного диаметра молекулы бензола, и в результате относительно небольшого прироста величины диаметра поры скорость адсорбции может значительно увеличиться. Идеальным является такой адсорбент, в котором достигнуто необходимое равновесие между избирательностью и скоростью адсорбции. По мере увеличения размеров молекулы или вязкости адсорбата влияние скорости адсорбции на процесс становится более ощутимым. [c.160]

    Массопередача в псевдоожиженном слое. Коэффициенты массопередачи были определены в таких процессах со взвешенным слоем, как испарение гранулированного нафталина в воздухе, осушка воздуха глиноземом или силикагелем и адсорбция четыреххлористого углерода из воздуха активированным углем, а также в процессах, в которых средой, вызывающей псевдоожижение, служила вода. Результаты Чжу, Калила и Веттерота , изображенные графически на рис. VIII-18, представляют, по-видимому, лучшую корреляцию, принимающую во внимание большинство параметров процесса. Эти данные можно также выразить следующими уравнениями  [c.284]

    Адсорбция индивидуальных углеводородов (н-бутана, изобутана, к-гептана и н-октана) на кислотных участках алюмосиликатного катализатора была изучена Эмметтом с сотрудниками [292, 293]. При низких температурах наблюдалась значительная адсорбция, но нри температурах начала крекинга адсорбировались очень малые количества парафинов. По-видимому, не требуется, чтобы количество углеводородов, адсорбируемое катализатором в течение времени, которое необходимо для крекинга, было очень большим. Определяющей скорость стадией является, вероятно, образование карбоний-иона. [c.340]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    В присутствии медной поверхности ионол обрывает цепи более интенсивно, чем в присутствии олеата меди. Если в присутствии олеата, как мы видели, [RH] =6-10 л/моль, то в присутствии медного порошка (Т-6, 125 °С, 5 u = 4,8-lQ2 см л) ftinH/ p= [RH] 8-1Q3 л/моль, т. е. на порядок выше. Видимо, имеет место адсорбция ионола на поверхности меди и адсорбированный ионол реагирует с пероксидными радикалами быстрее. [c.224]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    В ряде случаев можно, видимо, использовать для целей определения границ кинетической области в системах жидкость —жидкость прибор, аналогичный предложенному Данквертсом [И] для исследования процессов адсорбции (рис. 4.7). Прибор, точнее реактор, представляет собою цилиндр, разделенный на две части решеткой-ус-иокоителем с большой долей просветов. Выше и ниже решетки вращаются лопасти мешалки. В реакторе определяются, как обычно, скорости превращений в зависимости от числа оборотов мешалок. Здесь, в отличие от обычных аппаратов, поверхность раздела фаз строго определена, граница последних совпадает с уровнем решетки. Поэтому, рассчитав критерии Рейнольдса и Нуссельта для обеих мешалок, можно точно указать гидродинамическую границу перехода в кинетическую область. Полученные результаты затем можно в нринцине перенести и на другие аппараты. Такой прием хорош [c.74]

    В противоположность олефинам продукты окисления ароматических ядер, по-видимому, образуются путем присоединения к сопряженной системе, а не путем замещения. При 1,4-присоединении к бензольному ядру образуется хиноидная система, которую всегда находят среди первичных продуктов, и вполне возможно, что хорошие выходы малеинового ангидрида из бутадиена имеют такое же происхождение [16]. Иоффе и Волькенштейн [162] указывают, что окисление бензола на окислах-полупроводниках р-тнпа (как, например, СиО) приводит к полному сгоранию (СО, Oj), но с одновременным образованием следов фенола и дифенила, которые не были найдены при селективном окислении на окислах-полупроводниках п-типа (как, например, V2O5) в этом случае главными продуктами являются хинон и малеиновый ангидрид. Теоретические соображения заставляют думать, что в первом случае при диссоциативной адсорбции gHg образуются фенильные радикалы gHe, а во втором случае ассоциативная адсорбция приводит к образованию хиноидных бирадикалов  [c.177]

    Однако геометрия адсорбции не является, по-видимому, единственным фактором, влияющим наряду с наличием укороченных связей на скорость гидрирования, в частности на платиновом катализаторе. Различия в геометрии, очевидно, недостаточны для объяснения значительной разницы в скоростях гидрирования бензола, дифенила и нафталина. Необходимо учитывать влияние продуктов гидрирования и соотношения между гидрируемым веществом и водородом на поверхности катализатора. В случае гидрирования на платиновом катализаторе в проточной установке бйли вычислены коэффициенты торможения (Р) по уравнению Фроста [c.156]


Смотреть страницы где упоминается термин Адсорбция видимая: [c.126]    [c.428]    [c.112]    [c.119]    [c.129]    [c.150]    [c.170]    [c.172]    [c.178]    [c.303]    [c.103]    [c.206]    [c.302]    [c.183]    [c.259]    [c.154]    [c.296]   
Капельный анализ (1951) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Видимость



© 2025 chem21.info Реклама на сайте