Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы окислительного

    Водород в продуктах реакции отсутствует, что свидетельствует о протекании реакций окислительного дегидрирования. Кислород для реакции подводится из объема катализатора. При восстановлении катализатора наблюдается период постоянной скорости реакции окислительного дегидрирования. Независимо от условий проведения процесса периоду постоянной скорости реакции соответствует съем 11 —13 см кислорода с 1 г катализатора. Окислительная регенерация катализатора восстанавливает его активность. [c.685]


    В последние годы начинает развиваться и химия полупроводников. В частности, это проявляется в разработке новых методов получения и анализа индивидуальных веществ исключительно высокой степени чистоты и правильной кристаллической структуры, что необходимо для получения некоторых полупроводниковых материалов с заданными свойствами. Кроме того, за последние годы отчетливо выявилось, что внутренняя структура, характерная для полупроводников, определяет также и химические свойства некоторых соединений, в частности свойства некоторых катализаторов окислительно-восстановительных реакций. [c.145]

    Выше были описаны в основном методы приготовления катализаторов без носителей. Нанесенные оксидные катализаторы нередко синтезируют соосаждением различных солей металлов в присутствии, например, коллоидного оксида кремния. Таким способом часто получают катализатор окислительного аммонолиза пропилена. Приготовление нанесенных металлических катализаторов включает стадию обработки пористого носителя водным пли неводным раствором соответствующей соли. [c.22]

    Катализаторы окислительного аммонолиза весьма чувствительны к присутствию сернистых соединений, которые вызывают их отравление. Поэтому исходный газ подвергают сероочистке. [c.198]

    При разрыве в указанных местах у каждой из частиц, составляющих молекулу, образуется по одному неспаренному электрону. Это может приводить к образованию свободных радикалов. Типичными катализаторами окислительно-восстановительного взаимодействия являются металлы и окислы металлов переменной валентности. [c.26]

    Так, например, все активные катализаторы окислительно-восстановительных процессов, весьма различные по своему составу, [c.34]

    Третья группа — процессы с движущимся слоем катализатора. Окислительная регенерация проводится непрерывно в отдельных аппаратах. [c.166]

    NOx в отработавших газах без использования катализатора. Пониженное содержание N0 в выбросах обусловлено более низкой температурой сгорания вследствие избытка воздуха. В двигателях, работающих на бедной смеси, для снижения содержания углеводородов и СО в отработавших газах может использоваться катализатор окислительного типа. [c.130]

    Эта реакция была открыта в 1951 г. советским военным химиком Б.П.Белоусовым как гомогенная осциллирующая во времени реакция окисления лимонной кислоты смесью бромата калия КВгОз в присутствии сульфата церия Се(804)2 как катализатора окислительно-восстановительных процессов. В растворенной смеси этих веществ в разбавленной серной кислоте происходят периодическая реакция синхронного восстановления ионов церия, сопровождающаяся одновременным образованием ионов Вг  [c.386]


    В отличие от первых двух требований, относящихся к термодинамике (увеличение степени компенсации в каталитической реакции, малая прочность промежуточных соединений), следующее важное требование касается скорости взаимодействия реагентов с катализатором это взаимодействие должно происходить быстро, т. е. с малой энергией активации (такой случай изображен на рис. 18). Это особенно важно для гомолитических реакций, в которых разрыв электронной пары требует высокой энергии активации. Поэтому твердые катализаторы окислительно-восстановительных реакций (окисления, гидрогенизации, дегидрирования и т. п.) должны обладать радикальным характером, т. е. иметь неспаренные электроны. [c.100]

    Для замены серебра разработаны окисные катализаторы окислительного дегидрирования метанола. Наиболее эффективными из них являются окислы молибдена и титана. Для повышения активности к окислам молибдена добавляют до 37 % окиси железа. Смешанные катализаторы более активны и селективны, процесс на них протекает при более низких температурах (350—400 °С) и при большом избытке воздуха в реакционной смеси. Селективность катализатора достигает 95 %. Эти катализаторы постепенно вытесняют ранее принятые в промышленности серебряные. [c.199]

    Значение указанных в таблице 9 элементов, в особенности углерода, водорода и кислорода, азота, фосфора и калия, освещалось уже в биологии. По вопросу о роли микроэлементов вы могли бы высказать предположение, опираясь на известные вам данные о катализе. Не играют ли вещества, в состав которых входят микроэлементы, роль катализаторов Действительно, всем живым организмам необходимы вещества, регулирующие скорость биохимических реакций. Микроэлементы и входят в состав таких веществ, например ферментов. Действие их многообразно. Например, железо, марганец и цинк входят в состав некоторых ферментов-катализаторов окислительно-восстановительных реакций. Железо способствует образованию хлорофилла. [c.75]

    В патентной и технической литературе указывается на множество попыток ускорить процесс окисления сырья и придать определенные свойства окисленному битуму, применяя окислители, катализаторы и инициаторы. Так, в качестве окислителей предложено применять кислород, озон, серу, хлор, бром, иод, селен, теллур, азотную и серную кислоты, марганцовокислый калий и др. В качестве катализаторов окислительно-восстановительных реакций — соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.) в качестве катализаторов алкилирования, дегидратации, крекинга (переносчика протонов) предложены хлориды алюминия, железа, олова, пятиокиси фосфора и т. п. в качестве инициаторов окисления — перекиси и др. Большинство из них инициирует реакции уплотнения молекул сырья в асфальтены, не обогащая битумы кислородом. [c.157]

    Силикаты щелочноземельных металлов оказались селективными катализаторами окислительного дегидрирования этилбензола в стирол и циклогексана в циклогексен [445-453]. Так, выход стирола при окислительном дегидрировании этилбензола на таких катализаторах достигает 50%, селективность процесса 90%. [c.132]

    Перечисленные свойства кластеров делают их потенциально перспективными катализаторами окислительно-восстановительных процессов. В природе такой вид катализа широко распространен. [c.535]

    Для превращения олефина в гликоль необходимо присоединение двух атомов водорода и двух атомов кислорода к каждой молекуле олефина. Поэтому нет ничего удивительного в том, что были сделаны попытки осуществить указанное превращение с помощью перекиси водорода. Изучено окисление олефинов перекисью водорода в следующих условиях а) при облучении ультрафиолетовым светом б) в присутствии органической кислоты, в особенности муравьиной или уксусной (см. стр. 140—142) в) в присутствии некоторых окислов металлов или солей надкислот, способных служить катализаторами окислительного процесса, в органическом растворителе или без растворителя и г) в присутствии щелочи. [c.144]

    Присутствие воды ускоряет окислительные реакции, о чем свидетельствует ежедневно наблюдаемое явление окисления металлического железа (ржавчина). Вода действует как катализатор, окислительный потенциал зависит от парциального давления газообразного кислорода и кислотности раствора. При pH 7 вода в контакте с воздухом имеет ЕЬ порядка 810 мВ (см. вставку 3.5) — окислительный потенциал, намного больший того, который необходим для окисления закисного железа. [c.86]

    Электрокаталитический метод. Электрическое поле на электродах выступает в качестве катализатора окислительно-восстановительных реакций органических соединений. Скорость окисления или восстановления вещества при прочих равных условиях (температура, концентрация, растворитель) будет зависеть от природы электрода, от введения в его состав активирующих добавок. Эти добавки изменяют механизм передачи электрона, являясь посредниками между электродом и реагирующими с ним соединениями. [c.295]


    Механизм действия катализаторов окислительно-восстановительного типа. Специфика каталитических реакций состоит в том, что обмен электронами между реагирующими связями осуществляется с участием электронов катализатора. Типичными катализаторами окислительно-восстановительных реакций являются переходные металлы и полупроводники. [c.329]

    Комплексные оксихлориды, содержащие висмут, щелочные и щелочно-земельные металлы, хлор и кислород, были синтезированы, структурно охарактеризованы, испытаны в качестве катализаторов окислительной дегидрогенизации этана с образо- [c.284]

    Имеются патенты, в которых предлагается использовать твер дые катализаторы окислительного диспропорционирования окис лы никеля и меди, нанесенные на окись алюминия [104], метал лическую медь на окиси магния [105], окислы меди и щелочны металлов с присадкой соединений редкоземельных элементов н окиси алюминия [106] (декарбоксилирование бензойной кислот) в паровой фазе), пористый алюмосиликат, содержащий катион меди, никеля, урана, а также щелочных и щелочноземельных эле ментов [107]. В одном из патентов [108] предлагается вест процесс по обычной технологии, но добавлять силикагель, содер жащий соединения щелочных и щелочноземельных металло В промышленности все эти предложения не реализованы. [c.165]

    Гомогенные катализаторы такие, например, как окись азота или озон, могут оказывать влияние, однако об этих катализаторах нет надежных данных. Применение в качестве катализатора окислительных процессов в области очень низких температур галоидоводородов рассмотрено в главе ХХХН1. [c.344]

    Выделение С4-фракции из контактных газов реакции осуществляется абсорбционным методом с предварительным комприми-рованием контактного газа. Существенный интерес представляет бескомпрессорная схема выделения углеводородной фракции из контактного газа. В этом случае реакцию проводят при повышенном давлении. На рисунке приведена недавно опубликованная принципиальная технологическая схема процесса окислительного дегидрирования н-бутенов, осуществленная на заводе фирмы Филлипс в г. Боргере (США) [28]. Воздух компримируют и смешивают с водяным паром. Смесь нагревают в печи, смешивают с бутеновым сырьем и пропускают над катализатором окислительного дегидрирования, помещенным в реактор непрерывного действия. Тепло выходящего из реактора потока используется в котле-утилизаторе для производства технологического пара. Затем поток подвергается закалочному и обычному охлаждению и промывается от кислородсодержащих соединений. Фракцию С4 выделяют масляной абсорбцией и после отпарки ее из масла в десор-бере подают на конечную стадию очистки. Непрореагировавшие бутены возвращают в реактор. Небольшое количество кислород-содержащих соединений, имеющихся в промывных водах, отпаривают и сжигают в печи подогрева пара и воздуха. [c.691]

    Окислительный аммонолиз пропилена. Катализаторы окислительного аммонолиза пропилена подобны применяемым при окислении пропилена в акролеин. Первоначальные разработки основывались на молнбдате висмута (BiaOa МоОз = 1 2), к которому затем добавили промотор —пентоксид фосфора (висмут-фосфор-мо-либденовые катализаторы). Хорошие результаты дают также вана-дий-молибдаты висмута, оксидный уран-сурьмяпый катализатор и др. Имеются и более многокомпонентные катализаторы с добавками оксидов Со, Ni, Fe, As, W, Те и других металлов и редкоземельных элементов. Эти катализаторы используют в чистом виде или нанесенными на SiOa, АЬОз и кизельгур. [c.424]

    Катализаторами окислительного дегидрирования олефинов оказались оксидные композиции В1 + Мо, Bi-fMo-f Р, В1+ , Ре+5Ь и др. Все они активны при 400—600 °С и работают по уже встречавшемуся окислительно-восстановительному механизму (стр. 413) с участием кислорода кристаллической рещетки  [c.488]

    В качестве катализаторов окислительного дегидрирования этилбензола в стирол исследовались оксиды алюминия, полученные из нропилата и сульфата алюминия прокаливанием при температурах 800—1300 °С. Выходы стирола выше на оксиде из нропилата алюминия. [c.160]

    По мере выгорания кокс обогащается углеродом, так как сгорание содержащегося в нем водорода идет с большей скоростью, чем сгорание углерода кокса. В результате скорость горения кокса значительно понижается. По-видимому, в результате резкого снижения реакционной способности кокса при малых его концентрациях кажущийс я порядок реакции его горения становится вторым по концентрации кокса. Поэтому наиболее затруднена глубокая регенерация катализатора. Наличие в составе катализатора металла— катализатора окислительно-восстановительных реакций — позволяет значительно снизить содержание кокса в регенерированном катализаторе —до 0,1% и менее, так как скорость горения остаточного кокса возрастает в этом случае на порядок и более. При высоком содержании кокса на регенерируемом катализаторе затруднен отвод из регенератора больших количеств тепла. Поэтому регенерация катализатора в общем осуществляется значительно легче, когда установки каталитического крекинга работают с высокой кратностью циркуляции катализатора. [c.229]

    При классификации различных модификаций каталитического риформинга за основу принимаю систему окислительной регенерации катализаторов. Наиболее широкое применение нашли процессы риформинга со стационарным слоем катализатора, для которых, условия процесса выбраны таким образом, чтобы обеспечить дли тельность межрегенерациониого цикла 0,5—1 год и более. Относительно редкие регенерации катализатора на установках подобных типов совмещают, как правило, с ремонтом оборудования. Окислительную регенерацию проводят одновременно во всех реакторах, на что требуется 5—10 сут в год В технической литературе такие процессы обычно называют полурегенеративными или процессами с периодической регенерацией. Вторую группу составляют процессы с короткими межрегенерационными циклами. Регенерация катализатора проводится попеременно в каждом реакторе без прекращения работы установок риформинга. На таких установках имеется дополнительный резервный реактор, система трубопров9дов с надежной запорной арматурой. Третью группу составляют процессы с движущимся слоем гранулированного катализатора. Окислительная регенерация проводится в выносных аппаратах. [c.119]

    На рис. 1.3 представлены изменения химического состава поверхности и каталитических свойств железосурьмяных катализаторов окислительного дегидрирования бутилена при изменении состава реакционной смеси [8]. Слева по оси ординат отложено значение логарифма скорости, деленной на давление бутилена, а справа — селективность в отношении образования дивинила по оси абсцисс отложена степень восстановления катализатора, выраженная в процентах от монослоя. С уменьшением избытка кислорода в реакционной смеси увеличивается степень восстановления поверхности катализатора и соответственно резко снижается каталитическая активность и возрастает селективность. [c.11]

    По-видимому, среди большого количества гетерогенных каталитических процессов изменения свойств оксидных катализаторов под воздействием реакционной среды изучены наиболее подробно. Это относится прежде всего к катализаторам окислительно-восстановительных реакций при вариации соотношения концентраций окисляющего и восстанавливающего компонентов в реакционной смеси. С уменьшением этого отношения снижается окисленность катализатора, и в результате наблюдается резкое уменьшение общей скорости реакции при одновременном увеличении селективности в отношении продуктов неполного окисления. Изменение этих параметров на примере реакции окисления акролеина в акриловую кислоту на оксидном ванадиймолибденовом катализаторе [11] представлено на рис. 1.4. Кривая 3 показывает, как меняется с изменением состава реакционной смеси энергия связи кислорода на поверхности катализатора, определяющая каталитические свойства. [c.12]

    Механизм ароматизации алкаиов окончательно ие ясен. Считают, что на катализаторах окислительно-восстановительного типа реакция протекает по схеме ал<анциклоалкан арен. [c.252]

    Во-вторых, промежуточное химическое соединение катализатора с реагирующими веществами должно быть менее прочным, чем конечные продукты реакции, и, соответственно, стандартное изменение изобарного потенциала при образовании промежуточного соединения должно быть менее отрицательным, чем при образовании конечных соединений. Если твердое вещество дает очень прочное соединение с реагентами, то оно покроет поверхность твердого вещества и не будет далее реагировать. Например, благороднме металлы являются катализаторами окислительных процессов потому, что о( разуют с кислородом менее прочные окислы, чем другие металлы. Окислы, хлориды и сульфиды металлов являются катализаторами процессов окисления, хлорирования и т. п. из-за способности образовывать непрочные поверхностные соединения с кислородом, хлором и другими реагентами, [c.461]

    Проведено сопоставление каталитической активности и адсорбщюнных свойств известных отечественных и зарубежных углеродных материалов. Показана возможность создания устойчивых высокоактивных катализаторов окислительного действия на основе графитоподобного углерода (т.н. Сибуниты, разработанные в Институте катализа) путем специальной активации и традиционными методами нанесения активных компонентов. [c.87]

    Полифталоцианины обладают повышенной активностью по отношению к реакциям окислительно-аосстановительвого типа, ташш как окисление алкилароматических углеводородов, некоторых ароматических альдегидов. По своей активности, полимерные комплексы в большинстве случаев превосходят свои низкомолекулярные аналоги. Особенностью полимерных комплексов как катализаторов окислительно-восстановительного типа является их значительно более высокая селективность, чем у соответствующих низкомолекулярных аналогов, достигащая в рвде случаев ЮОу , например в реакциях окисления кумола [I]. [c.108]

    Углеводороды обычное на алюмохромовом катализаторе вакуумное на алюмохромовом катализаторе обычное на кальций-никельфрс-фатном катализаторе окислительное на фос-фор-висмут-молибденовом катализаторе Пиролиз бензина при 750 °С [c.155]

    Принципиальная схема получения серной кислоты контактным способом показана на рис. VI1T-26. Образующиеся в печи (Л) газы последовательно проходят сквозь сухой электрофильтр ( ), увлажнительную башню (fi), влажный электрофильтр (Г), осушительную башню (Д), содержащий катализатор окислительного процесса контактный аппарат ( ) и поглотительную башню (Ж). Из -нижней части последней отбирается полученный олеум, а из верхней удаляются [c.341]

    Цеолиты являются хорошими катионообменниками, что дает возможность вводить в их состав катионы самых различных металлов, в том числе и переходных, обладающих, как известно, высокой каталитической активностью в реакциях окислительно-восстановительного типа. Это направление катализа на цеолитах, а именно применение цеолитов, содержащих ионы и атомы переходных металлов, в качестве катализаторов окислительно-восстановительных реакций, начало развиваться в конце б0-х - начале 70-х годов. Рогинский и соавт. [22] первыми показали, чго цеолиты, содержащие ионы меди, хрома, железа, кобальта, марганца или никеля, проявляют высокую активность в окислении водорода,оксида углерода, этилена и аммиака. В последующие годы зто направление катализа на цеолитах интенсивно развивалось как у нас в стране, так и за рубежом, в результате чего были достигнуты определенные успехи. Однако следует отметить, что окислите-льно-восстановительные реакции, в отличие от реакций кислотночкновного типа, на цеолитных катализаторах исследованы в меньшей степени. Следствием этого, по-видимому, является отсутствие внедренных в промьпилен-ность цеолитных катализаторов для данного типа процессов. Поэтому не все возможности здесь еще исчерпаны и исследования в данной области являются актуальными и перспективными. [c.6]

    В заключение следует отметить, что, как и в реакциях окисления, кислотно-основные катализаторы окислительного дегидрирования проводят процесс не только в условиях гетерогенного газофазного катализа, но и в жидкой фазе. Так, водный раствор щелочи катализирует окислительное дегидрирование тетрагидрохиноксалина в дигидрохиноксалин [c.132]

    Несмотря на относительную стабильность, мембранные компоненты химически не инертны. Они сами подвержены метаболическим превращениям под действием окислительных ферментов, локализованных внутри мембран или на их поверхности. Мембраны содержат также хиноны и другие низкомолекулярные катализаторы. Окислительные реакции играют важную роль в модификации гидрофобных компонентов мембран. Например, стерины, простагландины и другие вещества, обладающие регуляторными свойствами, первоначально синтезируются в форме гидрофобных цепей, связанных с водорастворимыми переносчиками (гл. 12). В мембранах могут накапливаться гидрофобные продукты биосинтеза (так, предшественниками простаглан-динов служат полиненасыщенные жирные кислоты фосфолипидов). Однако при взаимодействии с кислородом в молекулах этих соединений образуются гидроксильные группы, что приводит к постепенному увеличению их способности растворяться в воде. По мере того как гидрофильность соединения возрастает благодаря последовательному гидроксилированию, гидрофобные компоненты мембран неизбежно переходят в водный раствор и полностью включаются в процесс метаболизма. Другим процессом, в котором липиды мембран активно разрушаются, является гидролиз под действием фосфолипаз. [c.356]

    Действие ионов металлов на белок определяется тем, что они являются кислотами по Льюису, а такя катализаторами окислительно-восстановительных процессов. Кроме того, ионы металлов поддерживают структурную организацию фермента. [c.411]

    Хотя реакции пероксикислот с аминами были достаточно хорошо изучены (см. гл. V), исследование реакций алкилгидроперекисей с аминами начато сравнительно недавно и поэтому в литературе нет исчерпывающих данных. Обычно считалось, что гидроперекиси при этом подвергаются восстановлению, особенно при нагревании, однако недавно было показано, что трет-бутилгидроперекись при 35° С в присутствии ионов тяжелых ме- таллов реагирует с диметиланилнном с образованием 95% Ы-метил-М-трет-бутилпероксиметиланилнна. Оказалось, что эта перекись стабильна при нагревании в течение 24 ч в кипящем бензоле Это взаимодействие представляет собой радикальную реакцию, в которой ион металла играет роль катализатора окислительно-восстановительного процесса  [c.52]


Смотреть страницы где упоминается термин Катализаторы окислительного: [c.683]    [c.213]    [c.39]    [c.386]    [c.30]    [c.383]    [c.282]    [c.284]    [c.86]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.167 , c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте