Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические изопропилового спирта

    Эти соображения, базирующиеся на развитой выше общей теории, принесли практическую пользу при разработке технологического процесса каталитического окисления изопропилового спирта в ацетон [9]. [c.425]

    Процесс производства ацетона дегидрированием изопропилового спирта протекает в паровой фазе при 380—400 С над катализатором (окись цинка, нанесенная на пемзу). По технологическому оформлению этот процесс аналогичен дегидрированию цикло-гексанола в циклогексанон (стр. 256). [c.214]


    Данный технологический процесс до сих пор применяется для промышленного производства изопропилового спирта, хотя он имеет ряд недостатков (например, высокая коррозия аппаратуры). [c.53]

    Основные технологические трудности связаны с выделением метриола из реакционной смеси, содержащей побочные продукты и большое количество солей. Для решения этой задачи привлекались [345] методы упарки в сочетании с кристаллизацией (в этом случае в качестве щелочного реагента — катализатора удобнее применять гидроксид кальция), обычной или дробной, а также экстракции. Наиболее эффективными экстрагентами оказались смешанные растворители — этилацетат с 2—4% этанола и дихлорэтан с 12—13% изопропилового спирта, а также смесь этилацетата с последним. [c.215]

    Представляется целесообразным автоматизировать операции приема и разбавления четыреххлористого титана, приготовления комплексного катализатора, откачки конденсата из узлов осушки и очистки азота, переключения резервуаров в промежуточном парке при отклонениях параметров технологического режима от за.-данных значений, переключения и регенерации адсорберов, подпитки бензином и изопропиловым спиртом, а также другие вспомогательные операции. [c.117]

    Для тушения пожара установки окисления изопропилового спирта оснащают дренчерными системами и лафетными стволами. Дрен-черные системы включаются в действие со щита управления. Эти технологические установки могут быть оснащены также системами пенотушения. [c.129]

    После ректификации образующегося разбавленного спиртового раствора получают 88%-ный изопропиловый спирт (азеотропная смесь, кипящая при 80,4 °С). Технологическая схема синтеза изопропилового спирта из пропилена примерно такая же, что и этилового спирта из этилена. [c.214]

    Схема технологического процесса. Установка включает следующие блоки насыщения сырья спиртом депарафинизации отстоя промывки и разложения комплекса насыщения циркулирующей промежуточной фракции спиртом регенерации промывной фракции промывки продуктов депарафинизации ректификации изопропилового спирта циркулирующего теплоносителя приготовления раствора карбамида. [c.103]

    Особенно большие успехи в деле промышленного использования катализа были достигнуты в процессах органического синтеза. Каталитическая гидрогенизация соединений с двойными связами синтетическое моторное топливо крекинг нефти десульфуризация нефтепродуктов синтез каучука, этанола и метанола, окиси этилена, изопропилового спирта, ацетона, акролеина, дивинила, изопрена, бензола, толуола получение синтетических волокон и других высокополимерных веш,еств каталитическая очистка технологических газов — вот далеко не полный перечень продуктов, которые получают в промышленном масштабе с использованием широкого ассортимента катализаторов. [c.180]


Рис. 188. Технологическая схема производства изопропилового спирта жидкофазной гидратацией. Рис. 188. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/11216">изопропилового спирта</a> жидкофазной гидратацией.
    После гидролиза разбавленная кислота упаривается до первоначальной концентрации и возвращается на абсорбцию. Принципиальная технологическая схема производства изопропилового спирта сернокислотным способом аналогична технологической схеме синтеза этанола (см. рис. У.б). [c.267]

Рис. 193. Технологическая схема производства ацетона при жидкофазной дегидрогенизации изопропилового спирта. Рис. 193. <a href="/info/66466">Технологическая схема производства</a> ацетона при жидкофазной <a href="/info/412268">дегидрогенизации изопропилового</a> спирта.
    В обеих технологиях используется доступное и дешевое сырье — этилен, они имеют высокую (95—98 %) селективность по целевому продукту. Оба технологических решения можно рассматривать как сопряженные технологии, поскольку образующийся технический эфир (диэтиловый или изопропиловый) выделяется в качестве товарного продукта. Однородная структура подсистемы разделения продуктов гидратации олефинов также характеризуется единством используемых принципов. В частности, обеспечивает полноту выделения продуктов из реакционной смеси (этиловый или изопропиловый спирты, соответствующие простые эфиры и вода). [c.438]

    В технологическом процессе вода используется также для промывки продуктов депарафинизации (дизельного топлива, парафина) от спирта, извлеченного из карбамидного раствор. Образующаяся смесь разделяется в отстойниках. Отработанная вода из отстойников сбрасывается в промканализацию. Обычно этот поток загрязнен незначительным количеством нефтепродуктов и изопропилового спирта (табл. 1.5), но при нарушении [c.26]

    Технологический процесс получения ацетона дегидрированием изопропилового спирта в жидкой фазе заключается в следующем. Изопропиловый спирт, предварительно нагретый в трубчатом аппарате при помощи водяного пара, поступает в реактор, где происходит каталитическое разложение изопропилового спирта в жидкой фазе на ацетон и водород. Продукты реакции направляются затем в холодильник, в котором часть полученного ацетона конденсируется. Разделение конденсата и несконденсировав-шейся парогазовой смеси производится в сепараторе. Конденсат частично возвращается в верхнюю часть реактора, частично отводится в виде товарного продукта. Несконденсировавшаяся парогазовая смесь поступает в абсорбер, в котором при помощи циркулирующего поглотителя из парогазовой смеси извлекаются пары ацетона. Водород отводится из верхней части абсорбера. Разделение ацетона и поглотителя осуществляется в отгонной колонне. Регенерированный поглотитель (нижний продукт колонны) возвращается в абсорбер, а пары ацетона (верхний продукт колонны) поступают в дефлегматор, где конденсируются. Полученный в конденсаторе жидкий ацетон присоединяется к основному потоку продукта, отводимого из системы. Часть циркулирующего ацетона используется в качестве флегмы в отгонной колонне. [c.293]

    Основным ИСТОЧНИКОМ поступления загрязнений в сточные воды установки являются насосные станции (см. табл. 1.5). Несмотря на небольшое количество этих вод (5—8 м /ч), загрязненность их отличается повышенным содержанием изопропилового спирта — до 1500 мг/л и нефтепродуктов до 6000 мг/л. Это вызвано главным образом утечками через сальники насосов, а также разливами продуктов при ремонте насосов и запорной арматуры. Общее количество сточных вод, сбрасываемых с установки, достигает 30—50 м /ч следует отметить, что химический состав этого стока зависит в основном от химического состава оборотной воды, применяемой на установке. Загрязненность общего стока установки характеризуется повышенным содержанием растворенных в воде органических веществ (см. табл. 1.5). Следует отметить, что количество сточных вод с установки депарафинизации и их загрязненность зависят в основном от сбросов насосных станций, что определяется качеством их эксплуатации. Потому для снижения загрязненности сточных вод этого технологического узла необходимо в первую очередь повысить качество эксплуатации и технологическое состояние аппаратуры, а также строго соблюдать режим технологического процесса. [c.27]


    Принципиально эти методы идентичны методам гидратации этилена они отличаются только технологическими параметрами, так как пропилен гидратируется намного легче, чем этилен. Благодаря высокой реакционной способности пропилена с серной кислотой, для гидратации можно применять менее концентрированную серную кислоту и вести процесс при более низких температурах и меньшей продолжительности контакта. Скорость полимеризации растет с температурой и с концентрацией кислоты больше, чем скорость этерификации. Пропилен более способен к побочным реакциям, чем этилен. Для получения наибольших выходов изопропилового спирта и наименьших количеств эфира и сокраш ения удельных расходов серной кислоты и вспомогательных материалов нужно работать с низкими превращениями, т. е. нри низких температурах, даже если для этого необходимо применять высокие давления. [c.431]

    Например, в производственном объединении Омскнефтеорг-синтез с 1974 г. эксплуатируется первая в стране установка по производству высокощелочной сульфонатной присадки С-300 [23]. Отличительная особенность производства сульфонатной присадки — наличие современного контрольно-измерительного, а также программного оборудования. Так, при экстракции из нейтрализованного кислого масла сульфонатов аммония необходимое количество изопропилового спирта поддерживается автоматически с коррекцией по расходу кислого масла. Коррекция осуществляется коэффициентом соотношения, который задается в соответствии с кислотностью кислого масла. Такая система подачи изопропанола позволяет сократить потери спирта, облегчить ведение технологического режима, улучшить условия труда. [c.27]

    Технологическая схема установки дегидрогенизации изопропилового спирта представлена на рис. 192. [c.447]

    Щих с большой скоростью й с большим тепловым эффеК-Ч ом (окисление метилового и изопропилового спиртов). Из-за слишком быстрого выделения тепла и высокой температуры реакции другое технологическое решение для этих процессов практически невозможно (см. главу IV). [c.51]

    Б. Технологическая схема процесса синтеза изопропилового спирта на полузаводской установке [c.585]

    Разработана непрерывная технологическая схема процесса синтеза изопропилового спирта с использованием в качестве реактора колонного аппарата. [c.588]

    Технологический процесс заключается в следующем. Предварительно нагретые пары изопропилового спирта поступают в трубчатый контактный аппарат. Реакционные трубы заполнены катализатором и обогреваются снаружи горячими продуктами сгорания. Катализатором служит окись цинка на пористом носителе. При температуре 400—450° происходит каталитическое разложение изопропилового спирта на ацетон и водород. [c.292]

    Большие возможности для комбинирования химической промышленности США создались в послевоенный период в связи с широким развитием производства нефтехимических продуктов. Быстрые темпы их роста и высокая норма прибыли способствовали широкой экспансии американских нефтяных монополий в химическую промышленность. Сильнее всего нефтяные фирмы проникли в производство тех нефтехимических продуктов, синтез которых технологически является прямым продолжением процессов переработки нефтяного сырья получение чистых ароматических, нафтеновых и алифатических углеводородов, бутадиена, стирола, изопропилового спирта, ацетона и т. д. Так, уже в 1962 г. доля нефтяных фирм в производстве 11 органических продуктов составляла >50% (например, бензол, бутадиен, Т0Л) 0Л, кумол), для 5 продуктов—25—50% (например, ацетон, этилен, нафталин) [186]. [c.123]

    Технологическая схема процесса следующая (рис. 32). Сырье, изопропиловый спирт и бензин, из емкостей 1, 2, 3 направляют через поточный смеситель 4 и аппарат 5 в реактор комплексообра-зованпя 6. Аппарат 5 работает как нагреватель или охладитель в зависимости от температуры поступающего в него раствора. Два установленных реактора 6 работают попеременно. [c.209]

    Большое значение имеет выбор подходящего растворителя для экстракции Известно много органических растворителей (бензин, бутиловый и изопропиловый спирты, толуол, ксилол, дихлорэтан, трихлорэтилен), хорошо растворяющих смолистые вещества осмола, но не все они могут быть использованы в ка нифольно экстракционном производстве Растворитель должен не только быть наиболее эффективным по технологическим свойствам, но одновременно и обладать минимальной огне и взрывоопасностью и наименьшей токсичностью Растворителей, полностью отвечающих этим требованиям, нет Менее других токсичен бензин [c.235]

    Инертные газы используются не только для флегма-тизации технологических процессов со взрывоопасными средами, их применение на химических заводах весьма широко, особенно азота. Во взрывоопасных производствах азот используется для продувки аппаратов и коммуникаций перед пуском, чтобы освободить систему от воздуха, а после остановки — для освобождения ее от взрывоопасных смесей. Азотом перёдавливают легковоспламеняющиеся жидкости, им заполняют свободные пространства емкостей с летучими или легкоокисляю-щимися жидкостями, например ацетальдегидом, этиловым эфиром, изопропиловым спиртом, защищают от искр статического электричества замкнутые простра нст-ва аппаратов. Содержание кислорода в азоте не должно превышать определенной нормы, иначе его защитное действие снижается или вовсе прекращается, например в производствах, где применяют или получают перекис-ные и металлоорганические соединения, азот не должен [c.144]

    В связи с большим содержанием н-ажанов во фракциях мангышлакских нефтей, чем во фракциях ромашкинских нефтей, в технологический режим процесса карбамидной депарафинизации были внесены следупцие изменения концентрация изопропилового спирта в циркулируищвм растворе увеличена с 64-66 до 69-7055, карбамида - с 34-35 до 38-40 , пределы кипения промывочной фракции сужены до 140-185°С вместо 135-2Ю°С, соотношение раствора карбамида и изопропилового спирта к сырьп увеличено до 4,5 1. Изменение соотношения компонентов вызвало необходимость уменьшения производительности установки по сырью до 85 от проектной величины вследствие ограниченной мощности имеющегося блока регенерации изопропилового спирта, а также насосов для перекачки комплекса и парафина. Однако благодаря высокому содержанию н-ажанов в сырье выработка жидких, парафинов вз фракции 190-ЗЮ°С увеличилась на 665 , а из фракции 190-350°С - на 88I. Компонента дизельного топлива при этом уменьшилось соответственно на 27 в 30I. Режим работы и свойства продуктов, получаемых на установке 64-1,при.депарафинизации различных дизельных топлив, приведены в табл.2.13. [c.111]

    Технологическая схема синтеза метриола приведена на рис. 10.6. Формальдегид, пропионовый альдегид и водный раствор NaOH поступают в реактор с мешалкой I, где при температуре 30—50 °С происходит образование метриола. Из реактора смесь поступает в экстракционную колонну 2, куда подается и растворитель — этилацетат и изопропиловый спирт. Раствор метриола из колонны направляется на кристаллизацию в аппарат 3. Кристаллизация проводится при температуре 17—20 °С. Кристаллический метриол после отделения от растворителя на фильтре 4 подвергается сушке в аппарате 5 и собирается как товарный продукт. Растворитель после фильтра отгоняется на ректификационной колонне 6 от высококипящих побочных продуктов. [c.337]

Рис. 186. Технологическая схема производства изопропилового спирта парофазной гидратации пропилена слабой серной кислотой. Рис. 186. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/420009">изопропилового спирта парофазной</a> гидратации пропилена <a href="/info/1017455">слабой серной</a> кислотой.
    В период 1934—1938 гг. дальнейшие исследования по синтезу изопропилового спирта проводились в АзНИИ [37] и в 1936—1940 гг. на опытном заводе АзСК [38]. Разработанный на этом заводе технологический процесс был положен в основу промышленного производства изопропилового спирта и с 1943 г. применяется на одном из химических заводов. [c.262]

Рис. 187. Технологическая схема производства изопропилового спирта парофазной гидратацией пропилена концентрированной серной кислотой. Рис. 187. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/420009">изопропилового спирта парофазной</a> гидратацией пропилена <a href="/info/49774">концентрированной серной</a> кислотой.
    Прямую гидратацию пропилена осуществляют с жидким или твердым катализатором. Жидким катализатором служит разбавленная серная кислота (27%), через которую пропускают пропилен и водяной пар при температуре 200°С и давлении 15 ат. Из твердых катализаторов наиболее эффективным является восстановленная окись вольфрама на силикагеле. Технологический процесс проводят при температуре 200—270° С и давлении 200 ат. Таким же эффективным катализатором является 40%-ная фосфорная кислота. В этом случае процесс ведут при температуре 170—180° С и давлении 10—17 ат. Заводская себестоимость изопропилового спирта прямой гидратации на 20— 30% выше по сравнению со стоимостью спирта сернокислотной гидратации. Это объясняется необходимостью применения 90%-ного пропилена, в то время как для сернокислотной гидратации используются 30—40%-ный пропилен пропанпропиленовой фракции. [c.57]

    Для сдвига равновесия реакции в сторону образования 3-аланина следует обеспечить большой избыток аммиака и высокую температуру [44, 66]. По данным Е. Жданович [50], требуется температура реакции 154— 158° С (избыточное давление 26—32 кгс/см ), соотношение 10%-ного раствора аммиака к акрилонитрилу 18,5 1 и углекислого аммония к акрилонитрилу 3,7 1. На основании этих данных технологический процесс заключается в следующем в горизонтальный автоклав 1 (рис. 18) с вращающейся мешалкой и паровой рубашкой загружают из мерника 2 водный раствор (10—15%) аммиака и из сборника 3 двууглекислого аммония и из мерника 4 акрилонитрил. Нагревают реакционную массу до 154—158° С, при этом избыточное давление повышается до 30—40 кгс1см . Не допускается загрузка более 0,4 объема автоклава. Из автоклава реакционную массу выгружают в перегонный аппарат 5, где отгоняют водный раствор аммиака. Кубовый остаток сливают в реактор 6, разбавляют водой и очищают активированным углем при температуре 40—50° С уголь отфильтровывают на нутч-фильтре 7, фильтрат направляют в сборник 8, а затем в вакуум-аппарат 9 для сгущения. Сгущенный раствор сливают в кристаллизатор 10, где выделяют -аланин добавлением из мерника // этилового абсолютированного спирта при температуре 0-1-5° С. Затем осадок фугуют в центрифуге 2. Кристаллы сушат в вакуум-сушилке 13 и направляют в сборник 14. Маточный раствор поступает в сборник 15, откуда засасывают в вакуум-аппарат 16, сгущают, сливают в кристаллизатор 17, где спиртом выделяют дополнительное количество -аланина, который отфуговывают в центрифуге 18. Кристаллы -аланина II для переосаждения направляют в реактор-кристаллизатор 10. Маточный раствор II из центрифуги 18 собирают в приемнике 19, он является либо отходом производства, либо его направляют на переработку в -аланин. Выход -аланина — прямой 40—50%, а при регенерации -аланина из вторичного и третичного аминов выход может быть увеличен до 65—70 %. -Аланин ( -аминопропионовая кислота) aHjOaN представляет собой бесцветные кристаллы с температурой 199— 200° С [52], молекулярная масса 89,09, хорошо растворим в воде, труднее в метиловом, этиловом и изопропиловом спиртах нерастворим в эфире и ацетоне. [c.144]

    Технологическая схема этого процесса представлена на рис. 14. Основной аппарат - реактор-автоклав 4, снабженный паровой рубашкой и заполненный зернистым катализатором. 50%-й раствор первичных алкиламинов в изопропиловом спирте в соотношении 1 1 и раствор формальдегида с мольным избытком 25% (масс.) насосами-дозаторами 2 подают в реактор 4 сюда же компресором / через фильтр [c.80]

    Вьщающуюс.ч роль в развитии отечественной нефтехимической промышленности сьи-рал Бакинский опытный завод. На этом заводе были отработаны технологические процессы пиролиза углеводородов, разделения сложных газовых смесей с получением этилена и пропилена, сернокислотной и прямой гидратации этилена и пропилена с получением синтетических этилового и изопропилового спиртов и многие другие. [c.193]

    В ряде случаев технологический поток необходимо не только осушить, но и глубоко очистить от нежелательных примесей, например пропилен, используемый для получения хюлипропилена. В процессе полимеризации на стадии промывки полимера от каталнзаторно-го комплекса непрореагировавший пропилен загрязняется изопропиловым спиртом. Отработанный пропилен составляет значительную часть от общего объема сырья, поступающего на полимеризацию. Возвращение его в цикл является неотложной задачей. Но для этого нужно очистить пропилен от спирта. Остаточное содержание спирта не должно превышать 3 %о. [c.395]

    Сточные воды на установке депарафинизации образуются в основном из следующих технологических узлов насосная реакторного блока и блока отстойников, барометрический конденсатор вакуумной колонны, холодная и горячая насосные, а также от промывки аппаратуры, к ним добавляются утечки г из оборотных сгстем и поверхностные стоки. Сточные воды от реакторного блока-—это воды от охлаждения сальников насосов, смыва полов в этот поток поступает избыток воды из отстойников горячей воды, применяемой в качестве теплоносителя для разложения карбамидного комплекса. Общее количество этого сброса достигает 15—25 м ч. Группа сточных вод реакторного блока (табл. 1.5) загрязнена в основном нефтепродуктами, изопропиловым спиртом, карбамидом. Соотношение БПКполн к ХПК 80—85% свидетельствует о том, что они относятся к наиболее легко окисляемым сточным водам НПЗ. [c.26]

    Таким образом, взрывоопасность обоих процессов жидкофазного окисления характеризуется принципиально одинаковыми факторами. Однако система окисления изопропилового спирта является менее взрывоопасной, чем система окисления циклогексана, поскольку имеет более низкий энергетический потенциал, более удачное аппаратурное оформление, надежную систему автоматического регулирования и контроля, оснащена необходимыми эффективными автоматическими противоаварий-нымй блокировками. Это подтверждается длительной эксплуатацией большого числа подобных технологических установок без крупных аварий, подобных той, которая произошла на фирме Нипро во Фликсборо. [c.225]

    На рис. 193 нредставл епа технологическая схема установки дегидрогенизации изопропилового спирта в ацетон [172]. [c.448]

    Технологическая схема производства присадки ЛАНИ-317 приведена на рис. 11. В реакторе периодического действия. 1 при 60 С к изопропиловому спирту в течение 40 мин добавляют суспензию пятисернистого фосфора в масле-разбавителе, приготовленную в аппарате 3. Затем в реакторе 1 повышают температуру до 70 Си выдерживают реакционную смесь 40 мин. Для отделения непрореагировавшего пятисернистого фосфора продукт направляют в отстойник 2. В реакторе 4 проводят фосфоросернение высших спиртов подачей суспензии пятисернистого фосфора из аппарата 3 при 80 С в течение 40 мин, после чего повышают температуру до 100 Си выдерживают смесь 30 мин. После завершения реакции фосфоросернения в реактор 4-подают 30% масла-разбавителя. Для отделения непрореагировавшего пятисернистого фосфора продукт из ре- [c.74]

    Сформулированные направления по совершенствованию рецептурно-технологических приемов для достижения предлагаемых норм расходов материальных ресурсов не требуют для своего осуществления, как это следует из приведенного ниже описания, реконструкции и технического перевооружения действующих мощностей. Так, в производстве сульфонатной присадки С-150 предлагается установить оптимальный состав нефтяного масла-сырья но ароматическим углеводородам, уменьшить избыток гидроксида кальция, расходуемого в процессе карбонатации, внедрить безмасляную карбонатацию,, использовать в качестве растворителя на стадии карбонатации и очистки присадки деароматизированный бензин вместо толуола и др. В дальнейшем в результате совершенствования технологии можно будет исключить некоторые стадии производства, а следовательно уменьшить потери сырья и материалов, исключить из процесса аммиак и изопропиловый спирт, уменьшить более чем наполовину образование шлама, содержащего более 30 % товарной присадки и других органических веществ. [c.114]

    Состав продуктов и наличие примесей. Стабильность и устойчивость технологических процессов находятся в зависимости от постоянства состава сырья и соответствия его ГОСТам и техническим условиям (ТУ). Особенно важно следить за тем, чтобы продукты, поступающие в производство, не содержали примеси, являющиеся высокотоксичными, взрывоопасными и корродирующими веществами или аерекисными соединениями. Например, в производстве изопропилового спирта методом сернокислотной гидратации на стадии гидролиза продуктов абсорбции исходная газовая смесь (пропан— пропиленовая фракция) не должна содержать даже малейших примесей ацетилена, так как при соприкосновении его с медными барботерами может образовываться ацетиленид меди, способный взрываться от любого теплового импульса и даже от гидравлического удара. [c.52]

    Инертные флегматизаторы применяют не только для флегматизации технологических процессов со взрывоопасными средами, но и для продув ки аппаратов и трубопроводов при подготовке их к ремонту и чистке, а также перед пуском системы после длительной остановки или вскрытия при транспортировании (передав-ливании) легковоспламеняющихся жидкостей и горючих пылей при испытании на герметичность оборудования, предназначенного для работы с горючими веществами для заполнения свободного пространства емкостей с легковоспламеняющимися, летучими и легкоокис-ляющимися жидкостями (ацетальдегидом, этиловым эфиром, этиловым и изопропиловым спиртами и др.) для тушения загораний, особенно в закрытых аппаратах, емкостях, помещениях небольшого объема и электроустановках и др. [c.57]

    Другие составляющие сложных технологических сред процесса карбамидной депарафинизации (дизельное топливо, бензин, метанол, парафин, изопропиловый спирт) неагрессивны. Поэтому в основных средах на стадиях образования комплекса, промывки комплекса углеродистая сталь не должна подвергаться интенсивной коррозии. Однако на поверхности углеродистой стали могут все же образоваться в небольшом количестве продукты коррозии, которые приведут к загрязнению циркулирующего в системе карбамида солями железа. Поэтому при решении вопроса о применении углеродистой стали на различных стадиях технологического процесса должны учитываться как количественные показатели скорости коррозии, так и возможность (допустимость) загрязнения технологических сред солями железа. [c.250]


Смотреть страницы где упоминается термин Технологические изопропилового спирта: [c.5]    [c.492]    [c.188]    [c.148]    [c.578]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Изопропиловый спирт

Спирты Изопропиловый спирт



© 2024 chem21.info Реклама на сайте