Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель, приготовление свойства

    В настоящее время известно более 100 сортов силикагеля [31], свойства которых могут сильно различаться. Некоторые марки силикагеля предназначаются специально для разделения определенных групп соединений, например липидов, или для специальных методов хроматографии, например сухой колоночной хроматографии [8] . Товарный силикагель обязательно должен быть химически чистым. Ионогенные примеси, которые могут остаться в материале в процессе приготовления, способны вызывать изомеризацию хроматографируемых соединений или каким-либо иным образом нарушать процесс хроматографического разделения. Помимо ионогенных примесей, качество адсорбента снижают также следы органических соединений, особенно если этот адсорбент используют для выделения из многокомпонентных смесей следов соединений, которые затем анализируют масс-спектрометрически. Размеры частиц различных марок силикагеля лежат в пределах от 0,063 до 0,5 мм, плотность его составляет 0,3—0,5 г/см  [c.161]


    В библиографии по жидкостной хроматографии [19] рассматриваются возможные области применения силикагеля для разделения многих типов соединений, а в обзорных статьях [31, 47] обсуждаются методы приготовления, свойства и характеристики силикагеля. [c.161]

    IV. Влияние условий приготовления на свойства силикагеля [c.50]

    Наиболее ярко процессы структурообразования проявляются при изучении механических свойств битумов, например пр1. сдвиге тонкого слоя битума, заключенного между двумя плоско-парал-лельными пластинками, одна из которых закреплена неподвижно, а другая сдвигается под действием приложенного напряжения [134], При этом исследования целесообразно проводить не на реальных битумах, а на специально приготовленных модельных системах [43, 45, 46], в которых влияние каждого компонента битума можно изучить в чистом виде. Каждый компонент модельной системы получают путем адсорбционно-хроматографического разделения битумов на силикагеле. [c.49]

    Теория формирования и структуры силикагелей, образую- щихся в результате полимеризации кремневых кислот, была приведена в гл. 3, а аналогичные вопросы, связанные с приготовлением гелей из золей, содержащих дискретные коллоидные частицы, рассматривались в гл. 4. Характеристики силикагелей были даны в предшествующем разделе. Здесь же будут описаны методы приготовления силикагелей и изменяющиеся технологические режимы, которые оказывают воздействие, на свойства получаемых силикагелей, а также определяют их использование. [c.698]

    Химическая инертность, высокая термостойкость, легкость регулирования пористой структуры — весь этот комплекс свойств дает возможность приготовления на основе силикагеля катализаторов и носителей с высокой удельной поверхностью при оптимальной пористой структуре. [c.4]

    В последние годы появились работы по приготовлению адсорбентов на основе очень чистого высокодисперсного непористого кремнезема, по адсорбционным свойствам и химии поверхности не отличающихся от силикагелей [238]. [c.103]

    Авторы [243] также исследовали влияние способа приготовления бидисперсных силикагелей на их прочностные свойства. Они установили, что прочность адсорбентов зависит от размеров твердых частиц, их содержания в пасте, влажности последней и интенсивности смешения. Образование прочной структуры Дзисько объясняет возникновением в процессе сушки силоксановых связей между близко расположенными гидроксильными группами геля н твердого силикагеля (ксерогеля). [c.106]


    Вакуум измеряют либо манометрами Мак-Леода или Пирани до - 10 мм рт. ст.), либо ионизационным манометром (до 10 ° мм рт. ст.). Для уменьшения продолжительности откачки целесообразно повысить температуру, но при этом не должно происходить спекания образца адсорбента или изменения природы поверхности. В какой-то мере выбор эффективных температур откачки связан с дополнительными опытами, поисками, ошибками, а также с некоторыми общими представлениями о физических и химических свойствах адсорбента. Некоторые инертные твердые тела, характеризующиеся высокой температурой плавления и устойчивой полиморфной модификацией, например корунд (а-окись алюминия), можно откачивать при температуре 1000°. Многие активные окислы, полученные осаждением или разложением при низких температурах, весьма чувствительны к нагреванию. Например, некоторые модификации двуокиси титана медленно спекаются в присутствии влажного воздуха [1] даже при 50°. Удельная поверхность некоторых модификаций активной окиси железа [2] и гидроокиси алюминия [101], полученных осаждением, также заметно уменьшается в результате откачки при 100°. Заметные структурные превращения в гидратированных кремнеземах и силикагелях [3] могут происходить при нагревании до 200° и даже иногда ниже 200°. Важно иметь в виду, что температура откачки подобного рода адсорбентов должна быть заметно ниже температуры начального процесса приготовления образца. [c.348]

    В сборнике изложены научные основы процессов приготовления адсорбентов с заданными свойствами, теоретические вопросы адсорбции, приведены результаты исследования свойств адсорбентов разных типов (активного угля, силикагелей и других неорганических гелей, цеолитов, неорганических кристаллов и пр.), показано использование адсорбентов в народном хозяйстве. [c.719]

    В создании катализаторов, обладающих субъективными свойствами, важную роль должны играть носители. Известно, например [1], что катализаторы, приготовленные на силикагеле, не могут быть термостойкими. [c.182]

    Метод получения катализатора смешением силикагеля и алюмогеля был известен из ряда работ [15, 16]. Однако в этих работах не было указаний в отношении стабильности каталитических свойств получаемых катализаторов. В наших работах по приготовлению так называемых смешанных катализаторов эти свойства были изучены. Стабильность смешанных катализаторов (СК) по отношению как к термическому воздействию, так и к действию паров воды оказалась весьма высокой. Об этом свидетельствуют кривые отравления, приведенные на рис. 3, 3, 4 и рис. 4, 1. [c.385]

    Продажный картофельный крахмал необходимо промыть и высушить. Если крахмал предназначается для проведения количественного хроматографического микроанализа, то при его приготовлении необходимо строго придерживаться методики, описанной в литературе [108, 109]. Крахмал осаждается медленнее силикагеля и при осаждении образует две зоны, которые хорошо заметны при освеи1,ении колонки с противоположной стороны электрической лампочкой. Растворитель проходит через колонки с крахмалом медленно, поэтому в большинстве случаев необходимо пользоваться устройством для создания избыточного давления. Об адсорбционных свойствах крахмала уже упоминалось в начале настояи1,ей главы (стр. 449). [c.465]

    Приведены сведения об основных типах промышленных катализаторов и силикагелей, их свойства и предъявляемые к ним требования. Описаны основные технологические процессы производства катализаторов и адсорбентов приготовление водных растворов и процессы формования, мокрой обработки и обезвоживания. Рассмотрены технологические схемы катализаторных фабрик по производству природных катализаторов пз бентонитовых глин (ханларит) и синтетических каталпзаторов алюмосилпкат-ных (АС), алюмомагнийсиликатных (АМС), цеолитных (ЫаХ, СаХ) и цеолитсодержащих (ЦАС), а также высокоактивных силикагелей (АД, СД) и цеолитов. Освещены лабораторный контроль производства, контрольно-измерительные приборы, автоматизация процессов и вопросы техники безопасности в производстве катализаторов. [c.2]

    Остается еще объяснить повышение объема пор, которое происходит при еще более низких значениях pH. Почти нет сомнений, что гели, образуемые при pH <5, фактически содержат еще меньшие по размеру частицы. Однако это не выявляется при измерениях удельной поверхности методом БЭТ, которая остается примерно равной 800—850 м /г для силикагелей, образованных при более низких pH. Это может быть объяснено тем, что при измерениях методом БЭТ происходит потеря площади вокруг точек контакта постепенно уменьшающихся частиц (см. выше раздел по характеристикам силикагелей). Таким образом, истинная поверхность силикагеля может непрерывно увеличиваться, но она не может быть полностью измерена по адсорбции азота. Однако всевозрастающий объем пор силикагелей, приготовленных при более низких pH, оказывается реальным явлением, хотя и не легко объяснимым. Вероятно, что, по мере того как диаметр частиц еще понижается (от 3,5 до 1—2 нм), все более усиливается коалесценция, и увеличение прочности на сжатие оказывается большим, чем те смещения, которые возникают за счет возрастающих сил поверхностного натяжения, когда поры становятся более мелкими. Как раз при pH 3,4 Оккерс измерил радиус пор, оказавшийся равным только 10 А. Вода в подобных порах фактически не имеет более своих нормальных свойств, поэтому поверхностное натяжение может оказаться меньшим, чем предполагается, из-за сильного молекулярного притяжения со стороны стенок пор. [c.719]


    Вайл [39] приводит весьма полный обзор истории вопроса приготовления, свойств и применения силикагелей в промышленности. Обширная литература и патенты, касающиеся этого предмета, остаются за пределами данной книги, но представляет интерес рассмотрение методов приготовления силикагелей в свете вышеприведенной картины структуры геля. [c.136]

    Листки силуфола 254 (производства Kavalier Glassworks) содержат слой макропористого силикагеля, приготовленного по методу Питры и Штербы 148], без индикатора или с флуоресцентным индикатором (на 254 или 366 пм), вкрапленным в макроструктуру сорбента. К этому силикагелю добавляют крахмал в качестве связующего и наносят полученную смесь на листки алюминия. Более подробные данные о свойствах и применении этого материала можно найти в рекламной литературе [52]. [c.99]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]

    Деалкилирование с водяным паром. Первые исследования реакции деалкилирования алкилароматических углеводородов с водяным паром были проведены в 1949 г. [46]. Эта работа показала, что при 350—450 °С в присутствии алюмоникелевых катализаторов ксилолы в избытке водяного пара можно превратить в толуол и бензол. Де-алкилирующие свойства никелевых катализаторов зависят от природы носителя способа приготовления катализатора и содержания в них никеля. В качестве носителей исследовали силикагель, окись алюминия [47—49], окись хрома, кизельгур [3, с. 168—176], окиси берилия, магния, кальция, бария, цинка [50, 51]. Наиболее благоприятные результаты получены при использовании в качестве носителя никелевого катализатора окиси хрома и окиси бериллия. [c.257]

    Особенно интересно, что обычным адсорбентам можно придать стереоселективность путем специальной обработки их оптически активными веществами с последующим полным удалением последних. Так, например, для этой цели силикагель приготовляли подкислепием раствора силиката натрия, содержащего оптически активное вещество — камфорсульфо-кислоту, миндальную кислоту. Образующийся гель захватывал из раствора и часть оптически активного вещества, гель сушили, отмывали от оптически активного вещества и получали стереоспецифичный сорбент, установленный именно на тот оптический антипод, который присутствовал в растворе в момент приготовления. При пропускании рацемата через такой сорбент наблюдалось преимущественное поглощение антипода, воспоминание о котором сохранилось на сорбенте [75]. Обрабатывая аналогично окись алюминия, можно и ей придать свойства стереоспецифичного сорбента [76]. [c.111]

    Сорбенты, применяющиеся в ГПХ, имеют различные свойства. Как правило, их подразделяют на мягкие, полужесткие и жесткие гели. К мягким относят гели, приготовленные на основе полисахаридов (крахмал, декстран, целлюлоза). Мягкие гели не устойчивы к давлению и при высоких скоростях движения элюента деформируются. Такие гели невозможно использовать в современной ВЖХ. Полужесткие ге.ли получают сополимеризацией стирола и дивинилбензола (стирогели) или полимеризацией випплацетата. Сорбенты, полученные на основе этих гелей, способны выдерживать высокое давление и применяются в ВЖХ. Такие гели в отличие от гидрофильных мягких могут быть использованы с органическими растворителями. Жесткие гели представляют собой стекла или силикагели, имеющие фиксированные размеры пор Недостатком этих материалов является их высокая адсорбционная способность. Для подавления активности их предварительно обрабатывают специальными химическими веществами. [c.610]

    В подавляющем большинстве случаев в качестве основного материала (носителя) используют целлюлозу или силикагель. Химикофизические характеристики этих материалов приведены в гл. 2, а свойства ионообменников на основе целлюлозы подробно рассматривались в гл. 7. Все эти данные относятся и к материалам, используемым для приготовления тонких слоев на пластинках. Отличие — в использовании особо мелкогранулированных фракций (2—20 мкм). Иногда для упрочения слоя силикагеля в него подмешивают немного гипса. Кроме того, для детектирования пятен веществ, поглощающих свет в УФ-области, с обоими носителями могут быть химически связаны флюоресцентные добавки. Ниже приведены марки и краткие характеристики наиболее распространенных продажных сорбентов, на основе целлюлозы и силикагеля, а также готовых пластинок с этими материалами, но сначала познакомимся еще с одним, ранее не встречавшимся типом сорбентов — на основе полиамидов. [c.461]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Патрик и Мак-Гавак [209] исследовали силикагели с точки зрения их важного практического применения в качестве адсорбентов. Прочно связанные силикагели, которые можно было нагревать до красного каления без разрушения или потери адсорбционной способности, производились посредством смешивания довольно крепких растворов, содержащих силикат натрия с отношением 5102 Ыа20 3,3 1 и избыточное количество соляной кислоты, что позволяло формировать гель, который затем промывали и медленно высушивали. За период с 1920 по 1950 г., как указывал в своей монографии Вайл [199], было разработано большое число способов подкисления и гелеобразования растворов, получаемых из растворимых силикатов, повышения механической прочности силикагелей, снижения усадки и увеличения их пористости. Процесс медленного высушивания является сушественным для предотвращения раздробления кусочков геля, возникающего из-за более сильной усадки наружных слоев в таком материале. Высокая концентрация кремнезема (вплоть до 15 г на 100 мл) в застудневающих растворах дает возможность получать плотные и механически прочные силикагели. Волф и Бейер [210] в своем обзоре рассмотрели взаимосвязь между условиями приготовления силикагеля из кислоты и силиката и свойствами конечного продукта. Основное положение заключается в том, что при промывании горячей водой увеличивается размер первичных частиц и понижается удельная поверхность. Выдерживание при pH >7 приводит к аналогичному эффекту. Если вода в гидрогеле замещается органической жидкостью, имеющей более низкое поверхностное натяжение, то формируемый силикагель будет давать меньшую усадку при высушивании, сохраняя большие по размеру поры. [c.700]

    Такой уэкопористый силикагель получали испарением водно] раствора обычной кремневой кислоты при О °С. Адсорбционнь свойства изменялись в зависимости от pH раствора, средний ди метр пор составлял 7—9 А (табл. 1.2). На приготовленных обра цах силикагеля получены изотермы адсорбции I типа , прич( крупные молекулы, такие, как бензол и I4, адсорбировали в наименьших количествах. К сожалению, эти силикагели оказ лись неустойчивыми при обработке водой их пористая структу] разрушалась. [c.16]

    Большое распространение в последнее время получила хроматография на полиамиде (е-поликапролактаме). Было показано, что полиамиды в зависимости от способа получения обладают различной разделительной способностью [154]. В качестве связующего для полиамидных слоев хорошо зарекомендовала себя целлюлоза [43, 154]. Полиамид применяли также и для приготовления незакрепленных слоев [154]. Помимо целлюлозы в качестве связующего можно использовать крахмал. Слои с пре-красны.ми механическими свойствами мол<но получить из смеси полиамида, силикагеля и крахмала [94]. Полиамид пригоден для разделения фенолов. В этом случае при использовании водных систем растворителей характер разделения аналогичен получаемому при применении хроматографии с обращенными фазами, т. е, в системе с гидрофильной неподвижной фазой (см. разд. 3.2.1.3) [154]. Необходимо помнить, что элюотропный ряд растворителей в случае полиамида совершенно иной, чем применительно к другим сорбентам. Это объясняется разным характером взаимодействия между хроматографируемым веществом и сорбентом. Помимо фенолов в тонком слое полиамида хроматографировали антипиретики [54], тиаминовые производные [60], антибиотики [77], консервирующие вещества [57, 90], аминокислоты и их производные, нуклеозиды и нуклеотиды [163, 164] и другие соединения. Хроматографируемые вещества хорошо вымываются из полиамидного слоя, поэтому пластинки с полиамидом можно использовать для повторных разделений [163]. [c.41]

    Известно, что силикагель промышленного изготовленп г содержит примеси. Это окислы железа, алюминия, ионы, натрия и кальция, которые часто являются нежелательными при использовании силикагеля в качестве адсорбента, катализатора или носителя. Их действие проявляется в ухудшении хроматографических свойств силикагеля, в снижении термостойкости, уменьшении селективности приготовленных на его основе катализаторов и др. [c.127]

    Для приготовления платинированных силикагелей с различной дисперсностью слоев платины в работе [10] была детально изучена зависимость хемосорбционных свойств, Pt/Si02 от условий их приготовления. Было найдено, что на дисперсность платины оказывают влияние все четыре основных этапа синтеза выбор носителя и исходного соединения ллатины, условия его нанесения на силикагель, высушивание образца перед восстановлением и условия (темлература, давление) лроведения реакции образования слоя металлической платины на носителе. [c.151]

    На рис. 11, взятом из работы [2], приведены данные по разложению перекиси водорода на платинированных силикагелях с различной дисперсностью частиц платины. Из рисунка видно, что в сериях однотипно приготовленных образцов с одинаковой дисперсностью частиц (у=сопз1), но различным весовым содержанием платины, наблюдается некоторый разброс активности. Он несколько больше, чем для системы Р1—Н-субстрат для тех же катализаторов. В связи с тем, что относительные изменения активностей кристаллических (у 0,25) и высокодисперсных (Y 1) образцов примерно одинаковы (на графике, естественно, более заметны изменения свойств высокоактивных кристаллических образцов), речь идет о разбросе, а не о закономерном изменении свойств с весовым содержанием платины. [c.170]

    Из рассмотрения кристаллографических сечений различных кристаллических модификаций кремнезема [1, 2] следует, что при прочих равных условиях различие в упаковке кремнийкислородных тетраэдров должно существенно сказаться на степени гидратации поверхности. При механическом дроблении кристаллического кварца структура его поверхности может быть значительно искажена. В литературе имеются указания о наличии на поверхности кварца тонкого слоя аморфного кремнезема [3]. В связи с этим картина расположения свободных углов кремнийкислородных тетраэдров на поверхности раскола реального кристалла может существенно отличаться от полученной из кристаллографических данных. Тетраэдры могут быть связаны с объемной структурой не только тремя углами, но, возможно, также четырьмя, двумя и даже одним. В случае силикагелей различие в упаковке и ориентации тетраэдров 5104 на поверхности может быть вызвано условиями их Приготовления и дальнейшей обработки. При длительном контакте образца с водой все выступающие на поверхности углы кремнийкислородных тетраэдров заняты гидроксилами, т. е. поверхность в этом смысле будет полностью гидратирована. Однако число таких углов, а следовательно, степень гидратации единицы поверхности различных образцов кремнезема может быть различной. Для проверки этих положГений. мы [4—8 провели систематические исследования адсорбционных и энергетических свойств, а также степени гидратации единицы поверхности кремнезема. В этих работах использовались различные образцы силикагеля, непористый кремнезем, полученный сжиганием кремнийорганических соединений (БС-1), и кристаллический а-кварц , их основные адсорбционные характеристики приведены в табл. 1. [c.107]

    Трудность заключается в том, что при описании процесса приготовления катализатора часто п )иводятся недостаточно полные данные. Например, в литературе [13], [14] недавно обсуждался вопрос о том, какими свойствами обладают платинированные силикагели. Катализаторы, полученные, казалось бы, в одинаковых условиях, по данным Г. К- Борескова, содержали слои кристал- [c.11]

    Структура и свойства силикагелей зависят от способа и условий их приготовления. Все существующие методы попучепия силикагелей можно разделить на три группы  [c.84]

    Остальная часть этой главы посвящается описанию свойств неподвижных фаз, применяемых для разделения методом ситовой хроматографии в невод1П>1Х средах. Авторы хотели бы дать читателю некоторое представление о выпускаемых промышленностью материалах этого типа. В зависимости от состава указанные неподвижные фазы можно разделить на две группы. Пористые силикагели и стекла являются неорганическими полимерами, в то время как алки лированные сшитые декстраны, поливинилацетаты и полистирол имеют органическую матрицу. Эти органические полимеры имеют поперечные связи и поэтому, если они не разрушаются, нерастворимы во всех растворителях. Однако они набухают в определенных растворителях, причем степень набухания зависит от растворителя, степени сшитос-ти и метода приготовления. [c.114]


Смотреть страницы где упоминается термин Силикагель, приготовление свойства: [c.107]    [c.97]    [c.487]    [c.220]    [c.60]    [c.58]    [c.225]    [c.108]    [c.1024]    [c.349]    [c.48]    [c.48]    [c.225]    [c.100]    [c.415]   
Неоргонические синтезы Сборник 3 (1952) -- [ c.94 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель

Силикагель приготовление



© 2025 chem21.info Реклама на сайте