Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метиловый спирт, Этиловый высшие

    В связи с удорожанием нефти и ограничением применения ТЭС в последние годы во многих странах мира наметилась тенденция к возрастающему использованию кислородсодержащих соединений в товарных высокооктановых автобензинах. Среди кислородных соединений достаточно широкое применение находят метиловый (МС), этиловый (ЭС) и грег-бутиловый спирты (ТБС), метил-грет бутиловый эфир (МТБЭ), обладающие (табл. 8.3) высокими октановыми числами, низкими температурами кипения, что позволяет повысить 04 головных фракций и тем самым улучшить коэффициент распределения ДС, а также достаточно высокой теплотой сгорания. Особенно быстрыми [c.209]


    Метиловый и пропиловый спирты при небольшом содержании не влияют на органолептическую оценку, однако они обладают высокой токсичностью. Так, например, метанол более токсичен, чем этиловый спирт, в 80 раз, пропанол — в 4 раза. Метиловый спирт вы- [c.302]

    Перекись водорода смешивается в любых отношениях с водой, этиловым и метиловым спиртами. Одним из недостатков концентрированной перекиси водорода является высокая (—0,89° С), температура замерзания, что затрудняет ее эксплуатацию в зимних условиях. Маловодная перекись водорода термически нестабильна и очень чувствительна к различного рода загрязнениям. Попадание в перекись различных примесей (пыли, ржавчины, солей тяжелых металлов и др.) приводит к резкому увеличению скорости разложения перекиси водорода и ее сильному разогреву. Лучшей гарантией стабильности перекиси водорода является обеспечение ее чистоты как при производстве, так и в процессе хранения, транспортировки и перекачек. [c.126]

    Метиловый спирт быстрее и чаще всего поражает зрительный нерв и, таким образом, приводит к потере зрения. По внешнему виду и запаху этиловый и метиловый спирты почти не различимы. Поэтому большинство отравлений метиловым спиртом происходит, когда его принимают за этиловый. Токсичность метилового спирта особенно высока при попадании в желудок. Отравление возможно и при вдыхании паров, и при попадании на кожу, так как метиловый спирт всасывается через кожу и накапливается в организме. Предельно допустимая концентрация паров в воздухе рабочих помещений не более 0,05 мг/л. При работе с метиловым спиртом различают три формы отравления легкую, среднюю и тяжелую. При любой из этих форм признаки отрав- [c.123]

    Выбор теплоносителей. Исходя из температурного диапазона работы теплообменника производится выбор теплоносителей. Для низкотемпературных термосифонов (от 200 до 550°К) применимы вода, аммиак, метиловый и этиловый спирты, все фреоны, ацетон и др. Низкотемпературные теплоносители характеризуются более высокими плотностями тепловых потоков, подводимых к зоне испарения (до [c.246]

    МТБЭ и ЭТБЭ. Октановые числа смешения эфиров несколько ниже, чем у метилового и этилового спиртов, однако это компенсируется другими преимуществами, к которым следует отнести низкую токсичность, хорошую совместимость с топливом и гидролитическую устойчивость, высокие антикоррозионные свойства. [c.128]

    Хлорированные углеводороды — химические соединения, в состав которых, кроме углеродов и водорода, входит хлор. Эта группа веществ хорошо растворяет смолы и масла. Некоторые из них в соединении с этиловым спиртом, этилацетатом, метиловым спиртом обладают высокой растворяющей способностью по отношению к нитроклетчатке. [c.12]


    Это метиловый (МС), этиловый (ЭС) и трет-бутиловый (ТБС) спирты, метил-трет-бутиловый эфир, обладающие высокими октановыми числами, низкими температурами кипения (табл, б.З), что повыи1г1ет октановое число головных фракций и тем самым улучшить коэффициент распределения детонационной стойкости по фракциям. [c.61]

    Сходство спиртов с водой проявляется и в их растворимости. Метиловый, этиловый и пропиловый спирты смешиваются с водой во всех отношениях молекулы воды, так же как и молекулы спирта, отличаются высокими дипольными моментами, поэтому между ними также может происходить взаимодействие. Этим объясняется большая растворимость метилового, этилового и пропи-лового спиртов в воде. Кроме того, спирт может образовать с водой гидраты, о чем свидетельствует повышение температуры при смешивании спирта с водой и то, что объем получаемой смеси меньше суммы объемов спирта и воды в отдельности. [c.139]

    Аномально высокая подвижность иона гидроксония, правда, меньшая, чем в водных растворах, сохраняется в метиловом и этиловом спиртах, но в других растворителях не наблюдается. Отсюда следует, что сольватирован-ный протон в неводных растворителях переносит электричество обычным путем, т. е. путем непосредственного движения по направлению к катоду, и лишь в спиртовых растворах протон получает возможность более выгодного движения (цепной, или эстафетный механизм). По-видимому, ионизация (диссоциация), например, хлористого водорода в спиртовом растворе происходит по уравнению [c.442]

    Высококипящие эфиры достаточно летучих кислот или спиртов. При получении эфиров высших кислот со спиртами С1 —Се, а также эфиров уксусной и муравьиной кислот с гликолями и глицерином, отгоняют воду из реакционной массы вместе с летучими исходным реагентом. Бутиловые и высшие спирты образуют с водой азеотропные смеси, которые при конденсации разделяются на два слоя. Возвращая спирт на реакцию и отводя водный (нижний) слой, можно достигнуть высокой степени конверсии. Когда конденсат гомогенный, нередко добавляют вещества (бензол, дихлорэтан), образующие с водой легкокипящие азеотропные смеси. Вода удаляется с ними, причем азеотропная добавка после конденсации паров и отделения от воды возвращается в реактор. При получении эфиров метилового и этилового спиртов этот прием не годится, и воду отгоняют вместе с избытком спирта водный спирт затем подвергают ректификации. [c.212]

    Температура плавления, как правило, с повышением молекулярного веса возрастает, но метиловый и этиловый спирты представляют собой в этом отношении исключение, так как они плавятся при несколько более высокой температуре, чем третий член ряда — пропиловый спирт. Такая же незакономерность замечается и в том, что удельный вес метилового спирта несколько-больше, чем этилового. Удельные веса от второго до девятого члена ряда опять постоянно повышаются. Молекулярный объем нормальных первичных спиртов также возрастает ог члена к члену на постоянную величину. [c.113]

    Как следует из таблицы, основными промежуточными продуктами окисления этана прп высоких давлениях являются этиловый спирт и уксусная кислота. В меньших, но все же значительных количествах накапливаются также метиловый спирт и ацетальдегид. Совсем невелик выход формальдегида и муравьиной кислоты. [c.24]

    Опыты показали, что давление прессования твердых катализаторов, не превышающее 100 МПа, практически не изменяет ни активность, ни производительность. Более высокие давления влияют на свойства некоторых катализаторов. Так, например, прессование оксида цинка до давления в 500 МПа привело к увеличению производительности, но к снижению активности данного катализатора в реакциях разложения метилового и этилового спиртов. Очевидно, после прессования в единице объема удалось сосредоточить большее число активных единиц катализатора, чем при атмосферном давлении. [c.210]

    Как отмечалось, аномально высокая подвижность иона гидроксония, правда, меньшая, чем в водных растворах, сохраняется только в метиловом и этиловом спиртах. Отсюда следует, что сольватированный протон в неводных растворителях переносит электричество обычным путем, т. е. путем непосредственного движения по направлению к катоду, и лишь в спиртовых растворах протон получает возможность более быстрого движения. По-ви- [c.90]

    На скорость, направление и селективность гидрирования некоторое влияние оказывает и реакционная среда, т. е. природа и количество растворителя. Наиболее часто в качестве растворителя используются этиловый и метиловый спирты, уксусная кислота, реже - диоксан, бензол (очищенный от тиофена), циклогексан и др. Лучшие растворители водорода - насыщенные углеводороды, в которых его растворимость в 3 раза выше, чем в спиртах, однако они не всегда достаточно хорошо растворяют восстанавливаемые органические соединения. Слишком летучие растворители, в частности эфир, при высоких температурах создают дополнительное давление в реакторе (автоклаве), при низких - затрудняют точное измерение количества поглощенного водорода. Вода иногда применяется при гидрировании кислот, их солей и других растворимых в ней веществ. Обнаружено, что она ухудшает избирательность восстановления винилгалогенидов, способствуя гидрогенолизу связи С-галоген. [c.39]


    При получении спиртов восстановлением сложных эфиров комплексные гидриды металлов применяются сейчас чаще, чем другие восстановители. В тех случаях, когда целью является получение спирта из соответствующей кислоты, целесообразно восстановлению подвергать не саму кислоту, а ее метиловый или этиловый эфиры. Выходы спиртов обычно высокие  [c.135]

    Этиловый спирт обладает высокой растворяющей способностью, смешивается с водой, эфиром, хлороформом, бензолом в любых отношениях Синтетический этиловый спирт загрязнен уксусным альдегидом, ацетоном Спирт, полученный брожением, содержит высшие спирты (сивушные масла). В качестве денатурирующих веществ употребляют пиридин, метиловый спирт, бензин. Технический абсолютный спирт, получаемый перегонкой 95%-НОГО спирта с бензолом, может содержать небольшие количества бензола и воды. [c.63]

    Нитрозофениларсонивая кислота кристаллизуется в иглах, окрашенных в бледножелтый цвет. Хорошо растворима в горячей воде, плохо в холодной с образованием темнозеленых растворов. Кислота хорошо растворима в растворах едкой или углекислой щелочи, а также в уксусной кислоте. Плохо растворима или даже практически не растворима в метиловом спирте, этиловом спирте, эфире, хлороформе. Не плавится при нагревании до 180° продукт буреет и затем чернеет. При нагревании до высокой температуры наступает бурное разложение, сопровождающееся вспышкой. [c.183]

    Метиловый спирт (метанол, или древесный спирт) СН3ОН — прозрачная жидкость со специфическим запахом, напоминающим этиловый спирт. Его получают из смеси окиси углерода и водорода в присутствии катализатора (окиси цинка и хрома) при высокой температуре  [c.111]

    Согласно уравнению (5), при присоединении протона к ароматическому углеводороду образуются протопированное ароматическое соединение и ион противоположного знака, стабилизирующий комплекс присоединения. В тех случаях, когда источником протонов является растворитель, имеюп1,ий высокую диэлектрическую проницаемость, можно предположить, что комплекс будет диссоциировать на ноиы. Это условие выполняется в случае НР, так как диэлектрическая проницаемость безводного НР при О равна 83,6 [62]. Экстраполируя величины, измеренные этими авторами в интервале температур от —73 до О , к 20°, получаем е, 59. Эта величина достаточно высока, чтобы обеспечить диссоциацию даже при комнатной температуре. Сам Р1Р диссоциирует в очень небольшой степени, однако фториды щелочных металлов при растворении в НР практически полностью распадаются на ионы, что можно показать измерением электропроводности [61]. Электропроводность НР повышается также при добавлении воды и спиртов. Фреденхаген и Каденбах [61[ объяснили это присоединением протона к группе ОН спирта. Интересно, что метиловый спирт, этиловый спирт и вода дают одинаковую предельную электропроводность (Ло -= 360). Поскольку во всех случаях анионом являлся фторид, нужно предположить, что оксониевые ионы этих спиртов имеют одинаковую подвижность. [c.293]

    Более подробно исследовал масло А. Сиволобов [226]. Масло извлекалось перегонкой водяным паром стеблей, листьев и цветов. В составе масла установлена смесь метилового спирта, этилового спирта, триметилкарбинола ( ), альдегидов, кетонов и эфиров. Среди альдегидов найдены уксусный альдегид, формальдегид, про-пионовый альдегид, изомасляный альдегид и другие альдегиды с высокой температурой кипения. Далее найдены ацетон и высококипящнй кетон. [c.279]

    Экстракция высших жирных спиртов из вторых неомыляемых может быть осуществлена с помощью метилового или этилового спиртов. Исследованиями, проведенными сотрудниками ВНИИНП [91], было показано, что противоточная экстракция метанолом в насадочной колонне при температуре 55—58° С и соотношении экстрагента к сырью 3 1 обеспечивает коэффициент извлечения кислородсодержащих веществ из неомыляемых-П в размере 85 — 87%. В полученном экстракте наряду с кислородсодержащими соединениями содержится 6—7% углеводородов. После отгонки метанола экстракт представляет собой концентрат высших спиртов с примесью значительных количеств карбонильных соединений и углеводородов. Высокое содержание,примесей ограничивает возможности непосредственного использования обезметанолен-ного экстракта. В целях снижения содержания карбонильных соединений экстракт был подвергнут гидрированию на никельхромовом катализаторе. Рекомендуемый режим гидрирования давление 300 ати, температура 180° С, объемная скорость 0,3 л1ч, подача циркулирующего водорода 1200—1500 на 1 сырья. Принятый режим позволяет почти полностью восстановить карбонильную группу до спиртов, практически не затрагивая гидроксильную группу. Гидрированные спирты омыляются щелочью для разрушения присутствующих в них эфиров. В результате омыления эфирное число спиртов снижается до 4—6 мг КОН/г. [c.170]

    При разработке методики определяли истинную плотность трех видов кокса, прокаленного при 1200°С в течение,6 ч и просеянного через сито 200 меш. В. табл. 51 привед нь , резуль- таты этих работ. В качестве насыщающей, щ1Дкости прдменяли бензол, метиловый спирт, воду, w-гептан и этиловый спирт. Были попытки применить пентан, но вследствие высокой его [c.193]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]

    Невит и Блох изучили также окисление этана при давлении 15—100 атм и температуре 260—360 . В продуктах реакции, помимо воды, метилового спирта, формальдегида, муравьиной кислоты и ацетальдегида, в преобладающем количестве находились этиловый спирт и уксусная кислота. Попышение давления благоприятствовало образованию веществ, получающихся без разложения молекулы углеводорода. Впоследствии в Англии и Канаде этот метод окисления под высоким давлением и при отношении углеводород кислород = 9 1 стал промышленным способом получения метилового и эти.чового спиртов из метана и этана. [c.349]

    Метиловый спирт, так же как этиловый, изопропиловый, бутиловый и некоторые другие спирты, обладает высокими антидетонационными свойствами [1]. Однако применение его затруднено из-за низкой физической стабильности бензино-метанольных смесей [2, 3]. Так, для полного исключения тетраэтилсвинца из опытного образца бензина АИ-93, содержащего 73% бензина каталитического риформинга жесткого режима и 27% бензина прямой перегонки, к образцу необходн- [c.106]

    На рис. 31, дающем в схематическом виде зависимость минимальных температур самовоспламенения от давления, кривая 1 изображает форму области самовоспламенения метапа, этана (для бедных этано-воздушных смесей), этилена, бензола, а также метилового спирта и формальдегида. Для этих веществ наблюдается непрерывное изменение температуры самовоспламенения в зависимости от давления. Иная форма области самовоспламенения представлена кривой 2 рис. 31, относящейся к этану (для богатых этано-воздушных смесей), пропилену и бутилену. Здесь наблюдается резкий излом на кривой самовоспламенения, приводящий к тому, что для этих веществ даже очень небольшое увеличение давления сверх некоторого его значения В переводит самовоспламенение из области высоких температур Ь) в область низких температур Наконец, третья форма области самовоспламенения была найдена Тоунендом для парафиновых и олефино-вых углеводородов, содержащих первые — три и больше, а вторые — пять и больше атомов углерода в молекуле, а также для исследованных спиртов, кроме этилового, альдегидов, кроме формальдегида, и эфиров. Вид их области самовоспламенения схематично представлен кривой <3 рис. 31. Из формы этой кривой ясно, что при давлениях, меньших А, самовоспламенение может осуществляться только при высоких температурах, больших К при давлениях А—В имеются три температурных предела самовоспламенения, т. е. при одном и том же давлении, например А, самовоспламенение будет происходить в низкотемпературном интервале М—ТУ, исчезнет в интервале М—Ь и снова возникнет, начиная с температуры Ь наконец, при давлениях, больших В, существует только один предел самовоспламенения, которое будет осуществляться при температурах, меньших, но близких к N. Таким образом, у высших углеводородов имеется низкотемпературный полуостров самовоспламенения, вытянутый в сторону низких давлений и определяющий в интервале давлений А—В три температурных предела самовоспламенения. Формы и размеры этого полуострова зависят от сосуда, состава смеси и природы самого углеводорода. С обеднением смеси углеводородом полуостров самовоспламенения сдвигается в сторону высоких давлений. Наиболее ярко выражен полуостров у парафинов с прямой цепью. У изопарафинов это явление тем менее отчетливо, чем раз-ветвленней молекула. Для всех углеводородов полуостров самовоспламенения расположен около 350°. [c.85]

    Свободную [3-нафталинсульфокислоту можно получить из нафталина по методу Витта и из эфиров, образующихся из нафталинсульфохло-рида при нагревании его до высокой температуры в запаянной трубке с этиловым или метиловым спиртом . [c.256]

    Металл обладает высокой коррозионной стойкостью во многих агрессивных средах бензоле, метиловом и этиловом спиртах любой концентрации и при любой температуре, газообразном и жидком водороде при температурах от -ь200 до —254° С, серной кислоте концентрации 6—96% при комнатной температуре и в других средах средней и высокой агрессивности [c.151]

    Сплавы обладают высокой коррозионной стойкостью во многих агрессивных средах бензоле, метиловом и этиловом спиртах любой концентрации и при любой температуре, сернистой кислоте любой концентрации при комнатной температуре, расплавленной сере при температуре до 130° С, чегыреххлористом углероде при любой температуре до кипения включительно, газообразном и жидком водороде при температурах от -1-250 до —254 °С и в других агрессивных средах [c.152]

    Для реакций нуклеофильного замещения, механизм которых связан с распределением зарядов в реагирующей молекуле в момент активации, скорость реакции повышается с ростом диэлектрической проницаемости растворителя, что способствует ионизации связи. Так, в реакциях сольволиза грет-бутилхлорида (СНз)зСС1, являющегося излюбленным объектом в исследованиях влияния среды на кинетику химических процессов, протекание процесса связано с промежуточным образованием ионный пары (СНз)зС" "С1 , вследствие чего в ряду растворителей этиловый спирт (ДП = 24,3) — метиловый спирт (ДП = 32,6) —формамид (ДП= 109,5) соотношение скорости реакций равно 1 9 430. Интересно, что в воде, которая из-за своей исключительно высокой сольватирующей способности обеспечивает ионизацию, скорость реакции в 335 000 раз выше, чем в этаноле. [c.78]

    Возможно применение и ранее высушенного топинамбура в виде ломтиков или стружки. Извлечение сахаров осуществляют или по диффузионной технологии (подробно описанной в разделе Сусло из сахарной свеклы ), то есть на брожение направляется сироп, или без отделения мезги от воды. В последнем случае на брожение направляется смесь стружки или ломтиков с воддй. Весовое отношение топинал ура к воде около 1 0,5 содержание сахаров в сусле около 12 мас.%. Этот промышленный метод по чения сусла из топинамбура использовался в Германии еще в 30-х годах нынешнего века. Методы получения сусла из топинамбура и цикория с применением кислот описаны в [17, 18]. Необходимо отметить, что этиловый спирт из топинамбура и цикория используется только для технических целей вследствие высокого содержания в нем метилового спирта. [c.86]


Смотреть страницы где упоминается термин Метиловый спирт, Этиловый высшие: [c.243]    [c.187]    [c.53]    [c.143]    [c.11]    [c.28]    [c.78]    [c.13]    [c.309]    [c.338]    [c.220]    [c.9]    [c.451]    [c.562]    [c.150]    [c.125]    [c.562]   
Основы технологии органических веществ (1959) -- [ c.402 ]

Основы технологии органических веществ (1959) -- [ c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Метиловый спирт

Спирты высшие

Этиловый спирт



© 2025 chem21.info Реклама на сайте