Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты требования

    Приведены свойства химических реагентов, описаны механизм их действия и технология применения для увеличения нефтеотдачи пластов и интенсификации добычи нефти, борьбы с коррозией и отложением солей, подготовки нефти и нефтяного газа, текущего и капитального ремонта скважин. Описаны также технические средства для транспортирования, хранения и дозирования в процессе использования химических реагентов и способы их ввода в технологические системы. Рассмотрены правила обращения с химическими реагентами, требования техники безопасности при работе с ними и мероприятия по охране окружающей среды. [c.208]


    Гранулированный катализатор загружают в аппараты колонного типа и используют в виде неподвижного слоя, через который проходят реагенты. Требования к прочности катализатора в этих условиях выше, чем при газо- [c.70]

    В связи с широким применением органических соединений как реагентов требования к их качеству повысились. Многие из этих реагентов разлагаются при хранении, особенно если их хранят в виде растворов. При хранении препаратов в склянках из темного стекла разложение их замедляется. [c.58]

    Аналитикам, недостаточно опытным в области анализа платиновых металлов, выбрать среди оксимов наиболее подходящий реагент очень трудно. Сложность предъявляемых к реагенту требований, отсутствие почти во всех случаях данных о растворимости и помехах делают задачу почти невыполнимой. По мнению [c.45]

    Задачу оптимизации для такого реактора можно сформулировать различно, в зависимости от того, какая цель при этом преследуется. Например, для заданного общего времени пребывания т и заданного числа ступеней N необходимо найти входные температуры ступеней Tf > (г = 1,. . N) и время пребывания реагентов на каждой ступени т,- (i 1,. .., N) так, чтобы общая степень превращения в реакторе была максимальной. Иная постановка оптимальной задачи заключается в требовании достижения заданной степени превращения ху, при минимальном общем времени пребывания реагентов в аппарате и заданном числе ступеней. [c.124]

    В значительной степени перечисленным требованиям удовлетворяют термодинамические характеристики — теплоты стадий с участием катализаторов, энергии связей реагентов с катализаторами, рассмотренные выше. [c.12]

    Согласно данной теории (А. А. Смирнов, Н. Д. Томашов и др.), на поверхности сплава образуется защитный окисел легирующего элемента, затрудняющий диффузию реагентов и окисление основного металла. По этой теории, к легирующему элементу Ме предъявляются следующие основные требования  [c.113]

    В соответствии с одним из возможных вариантов подачи СО2 в пласт (рис. 99) продукт, содержащий в своем составе углекислый газ, от источника поступает на обогатительную установку, где от газа отделяют влагу, механические примеси и побочные газообразные компоненты. Обогащенный химический реагент с высоким процентом (80— 90%) СО2 направляют на установку термодинамической подготовки двуокиси углерода для последующей перекачки. Назначение этой установки — привести термодинамические параметры (давление и температура) углекислого газа и его фазовое состояние (жидкость или газ) в соответствие с требованиями системы транспортирования, в частности с условиями приема насоса или компрессора. На объекте может быть осуществлен либо один из процессов охлаждение охлаждение с конден- [c.165]


    Поэтому важно, чтобы применяемые для этой цели реагенты не были бы загрязнены посторонними примесями и качество их соответствовало бы требованиям соответствующих ГОСТ. [c.24]

    Создание технологической схемы, оптимальной в смысле некоторого критерия, должно производиться в несколько этапов (рис. 4.2). При известном назначении химического производства, т. е. определенном наборе конечных продуктов и требованиям к ним, можно выделить следующие этапы выбор исходных реагентов и набора химических реакций, обеспечивающих получение заданных продуктов выбор способа ведения процесса (реактор вы- [c.76]

    Аппаратура, применяемая для получения присадок, весьма разнообразна, что связано со специфичностью условий синтеза на отдельных стадиях и с требованиями, которым должны удовлетворять целевые продукты. При правильном подборе условий процесса и типа аппаратов можно осуществлять равномерное по объему протекание реакции и проводить ее с высокой скоростью, что обеспечит большую производительность аппаратов. Поэтому выбор типа и конструкции промышленных аппаратов следует считать одним из наиболее ответственных этапов при промышленной реализации процесса. Конструкция аппаратов определяется свойствами используемых для синтеза сырья и реагентов и условиями [c.220]

    Растворители, реагенты. К растворителям депарафинизации предъявляются следующие специфические требования — они должны  [c.224]

    Таким образом, рассматриваемая теория, основываясь на строгих требованиях соответствия между наиболее существенными качествами реагентов и катализаторов, указывает один из возможных путей подбора активного катализатора для той или иной реакции. [c.65]

    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае ои будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им диоксида углерода. Поскольку [c.38]

    Прибор МП-8И (рис. 143) [100, 109] также служит для определения истираемости катализаторов и сорбентов. Он состоит из двух барабанов, вращающихся с разной скоростью. Наружный решетчатый барабан 1, имеющий лопасти 2, вращается со скоростью 30—200 об/мин и пересыпает гранулы на другой барабан 3, скорость вращения которого 1000—ЮООО об/мин. Измельченный материал собирается в поддоне 5. Навеска образца, остающаяся в решетчатом барабане, является мерой истираемости. Проведенные опыты показали, что такая методика удовлетворяет, в основном, поставленным требованиям [100, 109]. Прибор МП-8И можно использовать и для оценки износа зерен в условиях реакции, при этом его помещают в коаксиальную цилиндрическую печь, а необходимый поток реагентов подводят вдоль оси вращения [108]. Однако необходимость нагрева прибора до температуры катализа и агрессивность сред весьма сильно осложняет работу и во многих случаях приводит к невозможности применения прибора в условиях катализа. [c.316]

    К недостаткам метода следует отнести многостадийность, а также дефицитность сырья, в особенности ацетилена. К исходным реагентам также предъявляются весьма высокие требования по их чистоте (99,0—99,7%). [c.383]

    В СССР была разработана другая методика очистки твердым хлористым цинком, нанесенным на пемзу [13]. При этом способе очищаемые пары бензина пропускают через колонну, в которой насадкой служат куски пемзы с нанесенным на них хлористым цинком. Оптимальная температура этого рода очистки 175—225°. Расход хлористого цинка при очистке равен 0,1%. Качество получаемого продукта вполне отвечает товарным требованиям. Отработанный реагент может быть регенерирован обработкой горячей водой. В результате получаются рас- [c.315]

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]


    Хотя описанный выше метод основан на максвелловском распределении реагентов по скоростям, его применение не ограничивается только равновесными системами. Во-первых, он не содержит требования 7"д = Гц, т.е. его можно использовать при описании двухтемпературных систем. Во-вторых, что намного важнее, как было сказано выше, в методе не накладываются никакие условия на функции распределения по внутренним степеням свободы. Вычисленные уровневые коэффициенты могут [c.220]

    Однако опыт применения ингибитора И-1-А также показал, что, обеспечивая достаточно высокий эффект защиты от коррозии и сульфидного растрескивания, этот реагент не отвечает в полном объеме технологическим требованиям, предъявляемым к ингибиторам, так как имеет большую вязкость при минусовых температурах, закупоривает фильтры насосов и способствует вспениванию реагентов. Как отмечается в работе [36], весьма перспективным ингибитором в этих условиях, обладающим высокими защитными и технологическими свойствами, может быть разработанный, в настоящее время ингибитор ИФХАНгаз-1. [c.165]

    При вторичном риформинге предъявляются повышенные требования к катализатору. Исходный газ, имеющий температуру 750—800° С и содержащий На, СО, СОа, НаО и до 10% СН4 (в сухом газе), снова приводится к равновесию при температурах до 1000° С, в результате чего снижается содержание метана до 0,2% (см. рис. 19, 22, 28). Необходимая температура достигается введением воздуха, который, кроме того, дает азот для синтеза аммиака. Воздух смешивается с исходным газом над слоем катализатора, и начинается быстрая реакция. Возможно, что в зоне пламени происходит паровой риформинг и это несколько понижает температуру. Но теоретическую температуру пламени легче всего вычислить, если пренебречь этим эффектом. Она может превышать 1200° С в зависимости от расхода воздуха, температуры подогрева реагентов и т. д. Затем температура падает и на выходе составляет около 1000° С. Следовательно, катализатор вторичного риформинга должен быть способен противостоять без разрушения и усадки температурам 1200—1300° С. [c.109]

    В состав проекта водоочистной станции целесообразно включение наряду с химической и бактериологической лабораториями также технологической. Наличие такой лаборатории с моделями сооружений, предусмотренными проектной схемой, позволит качественно проводить пусконаладочные работы и, главное, оптимизировать работу проБзводственных сооружений в процессе последующей их эксплуатации с учетом изменяющегося качества исходной поды, вида и качества поступающих на станцию реагентов, требований к качеству очистки. Многолетний опыт работы таких лабораторий, например, на московском, киевском, куйбышевском, петрозаводском, бакинском водопроводах подтверждает это положение. [c.84]

    Теперь можно сказать, что с практической точки зрения между названными разновидностями крекинг-процесса нет существенной разницы, так как всо они дают тот жо выход и то же качество продукта. Если же отмечать более тонкие различия, то следует заметить, что систему с одним змеевиком можно предпочесть для легкого крекинга тяжелого остаточного-сырья (висбрекинг). С другой стороны, все указанные крокинг-процессы дают одинаково хорошие результаты для отбензиненной нефти и газойлей. Если имеется необходимость в обработке большого количества тяжелых фракций нефти, то предпочтение оказывается процессу с восходящим потоком реагентов в реакционном кубе. В этом случае можно отгонять болое легкие погоны, а более тяжелые оставлять в реакционной зоне до получеиия нужных результатов. Это особенно используется в различных процессах 1 рекинга до ] Окса. Если к обработке компонентов паровой фазы, как например, при крекинге газойлей и отбензиненной нефти, предъявляются более жесткие требования, то большим признанием пользуется система с нисходящим потоком реагентов в реакционной х амере. В этом случае жидкие фракции проходят через реакционную камеру и быстро удаляются, тогда как нары находятся там еще долгое время, чем достигается их нужная обработка. Этот метод был особенно эффективен для получения маловязкого мазутного топлива нз некоторых отбензинен-ных нефтей. [c.31]

    Инертность алкильных перекисей препятствует созданию удобного и отвечающего всем требованиям метода их анализа. Для восстановления такой перокиси обычными реагентами необходимо применение болео жестких условий [8, 371. Инертность перекиси ди- герет-бутила не позволяет определять полярографическим методом [120]. [c.299]

    Общепринятым методом оценки стабильности битума является нагревание его в виде тонкой пленки в условиях, имитирующих начальный, достаточно ответственный период использования битума — приготовление битумсодержащих материалов, когда битум находится в нагретом жидком состоянии. После прогрева в условиях, выбранных применительно к конкретному назначению битума (например, при 160°С в течение 5 ч для дорожных битумов), сравнивают те или иные показатели качества (температуру размягчения, пенетрацию, дуктильность, массу) с первоначальными. Допустимая степень изменения задается требованиями стандартов. — -С понятием стабильности связана стойкость битумов к воздействию многих реагентов при обычных температурах в частг ности, стойкость к воздействию разбавленных кислот и щелоче позволяет использовать битумы в качестве защитных покрытий [2, 15]. При повышении температуры реакционная способность битумов повышается. [c.23]

    На катализаторных фабриках серную кислоту применяют и как сырье и как реагент. Например, при производстве катализаторов из природных глин и синтетических катализаторов она является реагентом, а в производстве силикагелей — сырьем. Качество серной кислоты должно отвечать требованию по содержанию железа (не более 0,03%). В зимний перпод (с 1 ноября по 15 апреля) по треб ова- 1ию потребителе заводы-изготовители обязаны отгружать серную кислоту с содержанием 74—75% Н2804. [c.30]

    Лабораторный контроль является одной из ваиспейших стадий технологического процесса пронзводства катализаторов и адсорбентов. От точного и быстрого выполнения лабораторного анализа зависит соблюдение нравильного технологического режима, а следовательно и качество выпускаемой продукции. Участие лаборатории состоит в проверке сырья, реагентов, полуфабрикатов и готовой продукции на соответствие требованиям государственных стандартов и технических условий. [c.152]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Осажденные формованные катализаторы. Если по своим физикохимическим свойствам осаждаемый катализатор не образует монолитного геля или имеет кристаллическую структуру, или, наконец, если структура монолитного геля нежелательна, ввиду значительного внутридиффузиопного торможения проводимой реакции, осаждение катализатора ведут обычными методами. Полученные осадки отфильтровывают от маточного раствора и затем промывают. При использовании в качестве реагентов соединений, образующих в виде побочных продуктов термически нестойкие соли, например нитрат аммония, стадия промывки может быть или совсем исключена, или проведена не полностью. Дальнейшая технология зависит от природы осадка и требований к прочности катализатора. В редких случаях (при проведении контактных реакций в жидкой фазе) осадок размалывают и катализатор применяют в виде порошка. [c.179]

    Выбор схемы и технологии переработки газа является задачей, требующей выполнения большого объема предпроектных работ. Это связано с тем, что выбор способа очистки, расположение установок очистки и другие вопросы должны отвечать определенным требованиям - не только технологическим, экономическим, но и экологическим. Например, современные требования к установке очистки газа могут быть сформулированы следующим образом [2] минимальное увеличение себестоимости основной продукции, использование минимальных площадок для установки, применение недорогих и иедефицитных реагентов возможность непосредственного использования конечных продуктов или удобной их переработки полной автоматизации процесса очистки и гибкости к возможным колебаниям режимов минимального количества сернистых соединений в выбрасываемых из установки газах обеспечения хорошего рассеивания в атмосфере. [c.47]

    На практике трудно найти химические реагенты, полностью отвечающие всем указанным требованиям, В той или иной степени указанным требованиям отвечают алканоламины, из которых наиболее широкое применение для очистки газов от сероводорода и диоксида углерода нашли моноэтаноламин (МЭА), диэтаноламин (ДЭЛ), дигли-кольамин (ДГА), диизопропаноламин (ДИПА), а также метил-диэтаноламин (ААДЭА) [11]. [c.51]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]

    Парафиновые углеводороды, предназначенные для целей синтеза, должны иметь достаточную степень чистоты, так как примеси гомологов приводят к излишнему расходу реагентов и загрязняют целевые продукты. Согласно имеющимся требованиям, содержание основного вепхества в полученной фракции допускается от 96 до 99% в зависимости от области ее применения. [c.28]

    Выбор параметров процесса определяется требованиями высокой селективности и интенсивности. Температура зависит главным образом от активности катализаторов и может изменяться в пределах 250—420 °С. В зависимости от этого выбирают давление, которое, в соответствии с термодинамическими характеристиками, должно быть тем больше, чем выше температура, и может изменяться от 5 до 20—35 МПа. Очевидно, что снижение давления бла-гоириятно для уменьшения энергетических затрат на сжатие газа. Этому же способствует снижение рециркуляции непревращенного газа, т. е. увеличение фактической степени конверсии реагентов. Однако приближение к равновесной степени конверсии невыгодно из-за падения производительности и селективности. Поэтому фактическую степень конверсии синтез-газа ограничивают величиной 15—20%, что достигается при времени контакта 10—40 с. [c.528]

    Таким образом, основным условием оптимального проведения сложных реакций является правильный выбор аппаратурного оформления процесса с учетом характера движения жидкости в реакторе. Это условие определяется стехиометрическими соотношениями и наблюдаемой кинетикой реакций. Для обеспечения высокого выхода целевого продукта можно осуществлять процесс при высоких и низких концентрациях (параллельные реакции) или при постоянно соотношении концентраций (последовательные реакции) различных компонентов. В соответствии с. указанным требованием выбирают подходящую гидродинамическую модель, которая может быть реализована в реакторах периодического и пол упер иодического действия идеального вытеснения или в проточном реакторе идеального, смешения при медленном или быстром введении исходных реагентов. [c.199]

    Среди большого числа разнообразных по характеру процессов химической технологии можно выделить группы процессов, которые при определенных условиях, возникающих вследствие нарушения требований регламента, выходят в аварийные режимы с последствиями различной степени тяжести. Такие процессы называютоя дотендиально опасными. В качестве примеров можно назвать процессы нитрования, полимеризации этилена, магнийорганического синтеза. Нормальный ход этих процессов обусловливается тщательным соблюдением регламента и строгим поддержанием количественных соотношений реагентов. [c.11]

    Не все эти требования оказалось возможным удовлетворить и специальнымп методами очисткп природных масел и введением добавок. Особенно трудной явилась проблема получения масел с т. заст. порядка — 60°. Удовлетворительное разрешение она получила лишь в синтетических маслах, построенных на широком использовании сложных эфиров разветвленных спиртов и двухосновных кислот. Большой интерес в качестве специальных масел низких тамператур застывания и высокой термостойкости представляют также силиконы и силаны, а масел, стойких к сильным химическим реагентам, фторугле-роды. [c.395]

    Существующие методы позволяют очищать такие воды путем экстракции или эвапорации [33], а также применения химических реагентов (коагуляция) с последующей фильтрацией до норм, удовлетворяющих требованиям международной конвенции 1973 г. по предотвращению загрязнений с судов. Но эти технологические схемы не находят практического применения в судовых условиях в связи со сложностью эксплуатации, больщим потреблением химических реагентов и значительными площадями для размещения оборудования. Поэтому на подвижных транспортных средствах, каковыми являются суда, рационально использовать физико-химические методы обработки сточных вод, в частности электрообработку [41]. [c.58]

    Особое внимание следует уделить выбору сырья, реагентов, растворителей и катализаторов. Требования к их качеству должны соответствовать действующим государственным отраслевым или республиканским стандартам, межотраслевым или отраслевым техническим условиям. В том случае, когда по условиям процесса необходимы сырье и реагентьь, отличающиеся по качеству от норм (более высокая концентрация основного вещества, более жесткие требования к физико-химическим показателям и т. д.), еще на стадии подготовки исходных данных для проектирования следует решить вопросы снабжения проектируемого производства такого рода сырьем или реагентом. Если нет уверенности в том, что продукт требуемого качества может быть получен со стороны то объекты по улучшению качества должны быть предусмотрены в составе проектируемого производства. Регламент должен содержать сведения о промышленном производстве катализаторов и реагентов. [c.70]

    Поступившие по - железной дороге реагенты направляются в резервуарный парк реагентного хозяйства. Вместимость парка определяется требованиями к нормативному запасу реагентов. Необходимо учитывать, что в реагентном хозяйстве должна обеспечиваться возможность хранения запасов реагентов в следующих объемах серная кислота — 20-суточная потребность предприятия, едкий натр — 25-суточная, фенол, фурфурол, метилэтилкетон, ацетон, бензол, диэтиленгликоль, т-ринатрийфосфат — 30-суточная. [c.138]


Смотреть страницы где упоминается термин Реагенты требования: [c.113]    [c.157]    [c.51]    [c.132]    [c.128]    [c.247]    [c.117]    [c.303]    [c.35]    [c.208]    [c.217]   
Аналитическая химия (1965) -- [ c.160 , c.161 ]




ПОИСК







© 2025 chem21.info Реклама на сайте