Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ общие температуры

    Ранее уже указывалось, что ферменты — это белки, выполняющие роль катализаторов в биологических реакциях. Необходимость таких катализаторов станет очевидной, если вспомнить, что температура тела равна 37°С, а многие органические реакции протекают только при более высоких температурах. Интересно было бы понять, каким образом ферменты осуществляют свои каталитические функции. Установление точного механизма действия ферментов составляет фундаментальную проблему биоорганической химии. Большая часть превращений происходит на поверхности белкового катализатора на участке, обозначаемом как активный центр, где химические превращения следуют основным закономерностям органической и физической химии. При этом одновременно действуют несколько факторов, которые следует ограничить и исследовать отдельно с помощью специальных моделей. Однако, чтобы оценить каталитическое превращение реагента (субстрата) в продукт реакции, необходимо общее представление о таком явлении, как катализ. Субстратом обычно называют химическое вещество, превращение которого катализирует фермент. [c.189]


    О всех углеводородах в осадочных породах. Рис. 30 наглядно показывает незначительную роль углеводородов биохимического происхождения в общем балансе нефти и газа. Совершенно ясно, что подавляющая часть углеводородов нефти и газа образовалась в осадочных породах за счет действия других факторов, т. е. повышенной температуры, давления и катализа. [c.73]

    При использовании уравнения Аррениуса для экспериментального определения энергии активации реакции величины f o и Е принимаются независимыми от температуры. Однако величина предэкспоненциального множителя может весьма существенно меняться с температурой. Для гетерогенного катализа, в частности, это связано с возможностью изменения площади работающей поверхности катализатора с температурой. Можно выделить и такие реакции, когда наблюдаемое изменение скорости реакции целиком определяется ростом величины feo при повышении температуры. Для подобных процессов очевидна явная неприменимость уравнения Аррениуса для определения энергии активации из значений общей скорости реакций. Интерес представляет разработка новых методов определения энергии активации каталитических процессов. [c.23]

    Скорость реакции, отнесенная к единице массы катализатора, зависит не только от порозности, но и от концентрации реагентов и температуры. В этом случае зависимость может оказаться значительно более сложной, чем при некаталитических реакциях. Чтобы имело место явление катализа, реагенты должны продифундировать через цоры. При этом скорость процесса может лимитироваться реакцией или диффузией, либо та и другая стадия будут оказывать на скорость процесса почти одинаковое воздействие. Если скорость лимитируется реакцией, что типично для низких температур, то влияние концентрации и температуры будет таким же, как и при химической реакции. Наоборот, если скорость лимитируется диффузией, что типично для более высоких температур, то влияние концентрации и температуры аналогично влиянию, имеющему место при диффузии. В переходной области, в которой на общую скорость процесса влияют как реакция, так и диффузия, эффект температуры и концентрации на процесс часто оказывается довольно сложным. [c.40]

    Допуская неизменность теплоемкостей реакционной смеси и гранулированного материала в температурном интервале зоны катализа, общий перепад температуры в ней определяется из уравнения теплового баланса зоны. [c.212]


    Состав газа на входе в контактный аппарат, % Со- дер- жа- кие в гаг зе после I ста- дш аб- сор- б , Сте- пень кон- вер- сии I ста- дии ка- та- ли- за, % Содержание газа на выходе из П стадии катализа, % Общая. степень Температура газа, °С  [c.12]

    История техники свидетельствует о том, что технология отдельных производств химической промышленности изменяется со временем, причем изменяются даже такие промышленные производства, как, например, основанный на гомогенном катализе камерный способ получения серной кислоты, в котором, по существу, имеет место то же самое сырье (пирит) и тот же самый конечный продукт (серная кислота). Изменяются главным образом орудия и предметы труда, так как на некоторых участках технологической схемы могут быть изменены технологические условия (например, температура, давление и концентрация) наконец, меняются люди, занятые в производстве, их образование, организация труда и т. д. Если мы широко рассмотрим эти изменения в ряде существующих промышленных производств, то можно найти общее во многих индивидуальных изменениях, так как они обусловлены одной и той же причиной. [c.13]

    При низких температурах химическая реакция на катализаторе идет медленнее процесса диффузии веществ к катализатору и от него. При этом общая скорость процесса определяется наиболее медленной второй стадией катализа кинетическая область катализа). [c.150]

    Катализ — наиболее эффективное и рациональное средство ускорения химических реакций. Каталитические процессы применяются в промышленности в большом масштабе, причем область их применения прогрессивно растет. Подавляющее большинство новых производств, освоенных за последние годы химической промышленностью, включают каталитические процессы. Каталитические реакции подчиняются общим законам химии и термодинамики, но действие катализаторов значительно облегчает практическое осуществление ряда химических реакций. В присутствии катализаторов эти реакции ускоряются в тысячи и миллионы раз, протекают при более низких температурах, что экономически выгодно. Ряд промышленных процессов удалось осуществить только благодаря применению катализаторов. / [c.210]

    Сущность положительного катализа одинакова для всех его видов гомогенного, гетерогенного, ферментативного. Каждый из этих видов имеет свои отличительные особенности. В общем случае ускоряющее действие катализаторов принципиально отличается от действия других факторов, интенсифицирующих химические реакции температуры, давления, радиационного воздействия, действия света и т. п. Повышение температуры, например, ускоряет реакцию увеличением энергетического уровня реагирующих молекул, активацией их за счет вводимой извне теплоты. [c.215]

    В соответствии с общими кинетическими закономерностями (см. рис. 8) выход продукта при катализе возрастает со временем по логарифмической кривой. Поэтому, как показано на рис. 107, доля от общего выхода Ах в каждом из контактных аппаратов 1, 2 н 3 (рис. 106) понижается по мере контактирования, т. е. Axj>Ax2> >Лхз. Соответственно постепенно уменьшаются тепловой эффект процесса и количество теплоты, которое требуется отвести из каждого слоя. Происходящие при многоступенчатом контактировании изменения температуры и степени превращения показаны на рис. 107. При хорошей тепловой изоляции аппаратов в каждом слое катализатора происходит адиабатический процесс возрастания температуры пропорционально повышению степени превращения, что на рис. 107, А показано прямыми 1, 2, 3. Количество катализатора в аппаратах 1, 2, 3, как правило, последовательно увеличивается. Однако степень превращения в каждом отдельном аппарате 1, 2, 3 (рис. 106) последовательно снижается, что соответ- [c.240]

    Никелевые контакты очень чувствительны к действию соединений серы [15]. Сероводород или сероорганические соединения, которые содержатся в исходном газе, реагируют с катализатором, образуя неактивный N 5. Отравляющее воздействие серусодержащих соединений возрастает с понижением температуры конверсии. Отравление носит обратимый характер при температурах выще 700° С и переходе на очищенный газ активность катализатора восстанавливается. Однако регенерированный катализатор более чувствителен к соединениям серы, чем свежий. Таким образом, для устойчивой работы А1—№-катализатора он не должен содержать серу и ее соединения. Тщательной очистке от сернистых соединений должен подвергаться и природный газ. При температуре катализа, равной 600—800 С, общее содержание серы в исходной парогазовой смеси не должно превышать 2—3 мг м [15]. [c.66]

    Общей направленностью изменений ОВ в катагенезе является обогащение его углеродом и перераспределение водорода и особенно гетероэлементов — азота, серы и кислорода. Диспро-порционирование водорода под влиянием температуры, давления п катализа приводит к увеличению доли битумоидов в рассеянном ОВ осадочных пород. [c.225]


    На рис. 1У.6. изображены кривые, иллюстрирующие зависимость константы скорости реакции от pH и температуры. Из этих кривых видно, что константа скорости реакции элиминирования особенно быстро растет в области pH, близкой к названным выше значениям перехода общего катализа в специфический. С повышением температуры эти точки по оси абсцисс сближаются. Расчет эффективных энергий и энтропии активации показал, что они сильно зависят от pH, причем при pH < 2,0, т. е. в области специфического кислотного катализа, отрицательная энтропия активации скачкообразно увеличивается, принимая положительное значение. [c.152]

    Успехи неорганической химии вносят свой вклад в катализ по двум направлениям. Во-первых, открытие и идентификация новых соединений резко расширяет круг разнообразных веществ, пригодных для использования в каталитических процессах. Во-вторых, появляются возможности решения проблемы обеспечения стабильности катализаторов при воздействии высоких температур и реакционной среды. Среди огромного числа соединений существуют группы веществ, проявляющие общие свойства, что обеспечивает основу для их классификации. [c.111]

    Пока отсутствует общая теория гетерогенного катализа. Активность катализатора для гидрогенизации зависит от его природы, температуры, метода приготовления и характера подвергаемого гидрогенизации продукта. [c.198]

    Определяющая роль в развитии производства ПЭНД, как и раньше, остается за каталпзаторами. В последние годы ведутся поиски каталитических систем, принципиально отличающихся от известных. К таким системам i относятся, в частности, иммобилизованные на полимерных носителях ( гетерогенизированные каталитические системы) [214]. Представляют существенный интерес однокомпонентные катализаторы, работающие при по-вышенных температурах (до 200 °С), а также бифунк- циональные катализаторы [61]. Исследования в области высокоактивных каталитических систем полимеризации олефинов примыкают к общей проблеме катализа — использованию каталитических систем, близк[1х к биокатализаторам— ферментам [195, 196]. [c.190]

    В последние годы в формалиновом производстве начали применять окисные катализаторы, из которых наиболее эффективными оказались смеси окислов Мо- -У, Ре- -Мо и др Процесс ведется при необычно низкой температуре в зоне катализа — 350—360 °С Окисные катализаторы обладают высокой (до 96%) селективностью (т е до 96% всего прореагировавшего метанола превращается в целевой продукт) и обеспечивают при этом глубокую общую конверсию, а потери сырья на побочные реакции не превышают 2 7о В отходящих газах содержится 1,1—1,3 % СО и всего лишь 0,2 % СОг Расход метанола на 1 т формалина снижается до 427 кг [c.151]

    Процесс глубокой очистки поверхности металлического образца термообработкой и (или) ионной бомбардировкой неизбежно сопровождается удалением некоторого количества металла, который осаждается в вакуумной камере. Даже если его количество мало, это может заметно влиять на исследование адсорбции (и катализа). Например, очень тонкая металлическая пленка (10- г/м ) состоит из отдельных и редко расположенных весьма мелких кристаллитов, однако в пределах заданной удельной поверхности подложки общая поверхность металлической пленки вполне может быть равна поверхности, на которой осаждены кристаллиты. Чтобы воспрепятствовать адсорбции (или каталитической реакции), можно поддерживать достаточно низкую температуру металла. Поскольку адсорбция многих газов, таких, как кислород, водород или окись углерода, на переходных металлах идет с высокой скоростью даже при 77 К, использование указанного способа для подавления нежелательной адсорбционной активности весьма ограниченно чаще его применяют при каталитических исследованиях, так как не многие каталитические реакции быстро протекают при 77 К. Если подавить нежелательную активность за счет разной температуры невозможно, очищенный образец металла необходимо изолировать от металла, осажденного в процессе очистки. С этой целью необходимо перенести через запираемое отверстие в другую часть вакуумной установки или очищенный образец, или осажденный металл. Выбор определяется характером исследуемой реакции и типом металлического образца. Поэтому, [c.344]

    Механизм и кинетика гидроформилирования наиболее изучены для катализа карбонилами кобальта. Наблюдается сложная зависимость скорости от парциального давления реагентов и температуры. При соотношении СО Н2 = 1 1 и прочих равных условиях скорость при низких давлениях очень мала, причем растет линейно с повышением общего давления до 10 МПа, а затем остается постоянной (рис. 156, кривая /). Если парциальное давление оксида углерода остается постоянным, скорость гидроформилирования оказывается пропорциональной давлению водорода (кривая 2). При постоянстве последнего зависимость скорости от парциального давления оксида углерода имеет сложный характер (кривая 3). При малом парциальном давлении Рсо повышение этой величины уиеличивает скорость, но прп некотором пределе наблюдается мак- [c.532]

    Полученная в расчетах зависимость т] от управляемых параметров t и имеет максимум (рис. 9.3), что легко объясняется физически. Естественно, что степень утилизации тепла монотонно возрастает при увеличении активности катализатора, адиабатического разогрева, входной температуры и количества инертного материала. При этом изменяются оптимальные значения управляемых параметров, обеспечивающих максимум величины т). Общее количество утилизированного тепла зависит от этих параметров слоя и входящей смеси таким же образом. Увеличение линейной скорости и высоты инертной насадки ограничено ростом гидравлического сопротивления ДР, увеличение же адиабатического разогрева при неизменной активности катализатора ведет к росту Гтах И ПОЭТОМу ОГ-раничено пределом термостойкости катализа- [c.203]

    При одинаковой скорости подачи жидкого сьфья способность к каталитическому крекингу выше у фракций с более высокой средней температурой кипения. Однако это только кажущаяся закономерность, потому что у фракций с более низкой средней температурой кипения более низкий средний молекулярный вес, в связи с чем в данном объеме или массе сьфья содержится большее количество молекул. Следовательно, в единицу времени над одним и тем же катализатором можно подвергнуть крекингу одинаковое количество молекул высоко- и низкокипящих нефтяных фракций. Тем не менее для высококипящих фракций число крекированных молекул составляет больший процент от общего числа молекул. По этой причине крекинг одного и того же числа молекул этих двух фракций соответствует разньпи степеням превращения. Этот пример показывает, что, пользуясь понятием "объемная скорость" (в обшем-то очень полезньп понятием в катализе), можно прийти в случае крекинга к сомнительньпи выводам. [c.47]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]

    Нафтеновые кислоты, подобно жирным, подвергаются кето-низации при повышенных температурах в присутствии катализаторов. Кетоны, имеющие общую формулу С Н2п-1 СОСН3 были получены Н. Д. Зелинским и Е. Ряхиной при совместном катализе уксусной и нафтеновых кислот. [c.138]

    Роль катализатора возрастала по мере того как физические условия (главным образом, температура) приближались к земным условиям. Но общее значение катализа вплоть до образования более или менее сложных органических молекул все еще не могло быть высоким твердые неорганические тела выполняли роль или неспецифически,>с ка га. 1[)заторов цсппых газовых реакций, которые и без того мо1 лп легко осуществ ться под влиянием радиации, или специфических катализаторов роста бесконечно однообразных кристаллических неорганических же тел. [c.198]

    Сравнение результирующих к. п. д., приведенных в табл. 42, по1 азывает, что в прямонроточных устройствах (с движущимися гранулированными катализаторами) онп увеличиваются с повышением среднеэффективных температур крекинга и уменьшением селективности бензинообразования. Подобные же тенденции наблюдаются и в системах с псевдожидкими катализаторами, но у них па общие показатели очень сильно влияют гидродинамические условия. Результирующие к. п. д. у зтих систем резко снижаются из-за падения концентрационных к. п. д. при равных среднеэффективных температурах процесса. Однако концентрационные к. п. д. систем с пылевидными и микросферическими катализаторами могут быть увеличены введением секционирования зоны катализа эффективность работы систем с внутренним секционированием приближается к получаемой в прямонроточных условиях. [c.279]

    Любое из индивидуальных соединений содержится в сырой нефти, естественно, в небольших количествах, поэтому до его выделения необходимо повысить концентрацию. Перегонкой можно грубо отделить широкую фракцию Се—Са, но даже в этой фракции содержание ароматических углеводородов довольно низкое. Цнкло-дегидрогенизацию алканов в арены осуществляют при высоких температурах и давлениях в присутствии металлических катализаторов. Обычно в качестве катализатора используют платину (плат-форминг) на оксиде алюминия высокой чистоты. На металлических центрах осуществляются реакции гидрогенизации — дегидрогенизации, а кислотные центры на оксиде алюминия необходимы для катализа процесса изомеризации. Реакции гидрокрекинга могут проходить на центрах общего типа. Платину обычно наносят на носитель в виде платинохлористоводородной кислоты, которая также образует кислотные центры на оксиде алюминия. Количество платины в катализаторе колеблется от 0,3 до 1,0% по массе, а процесс происходит при 500—525°С и давлении от 1,0-10 до 4,0-10 Па. Поверхность катализатора может легко дезактивироваться сернистыми соединениями и отложением кокса. Поэтому исходное сырье обессеривают до содержания серы <3 м. д. по массе и реакцию проводят в присутствии водорода, чтобы избежать отложения кокса. [c.323]

    Для ГАХ. 67. Уголь общего назначения. 68. Для очистки воздуха. 6Э—83. Для обесцвечивания растворов. 84—89. Для дезодорации и адсорбции из растворов, 90—101. Для адсорбции и катализа в газах. 103. Отбеливающие глины с добавкой активного угля. 104. Для ГАХ. 105—106. Обесцвечивающий уголь двух сортов стандартный и промытый кислотой. 107. Для КЖХ. 108—111 Для ГАХ. 112. Высокоочищен-ный обесцвечивающий уголь. 114, Для адсорбции из газов. 115. Для адсорбции из газов при повышенной температуре. 116. Для очистки газов, рекомендуется для поглощения бензола из бытового газа. 117. Для адсорбции ультрамикропримесей в газах. 118, Для улавливания ядовитых веществ в.газах. 119. Импрегнированный уголь для улавливания сероводорода (превращение в элементарную серу в присутствии следов кислорода). 120. Для улавливания серусодержащих соединений (в результате адсорбции после каталитического разложения). 121. Для очистки органических рас-гворителей (в нарах). 122. Для очистки сероуглерода от сероводорода (в парах). 123. Носитель для катализаторов в газофазных реакциях. [c.125]

    Многие теоретические вопросы гетерогенного катализа требуют для своего разрешения сравнительной оценки активности разных катализаторов, отличающихся и по составу, и по химической природе, и по способу приготовления, и по обработке внешними воздействиями (температура, облучение и т. д.), и по вариации химической природы носителя. В литературе, особенно ранней, неоднократно приводились ряды сравнительной активности, однако ценность этих данных, как правило, невелика, поскольку только в редких случаях выполнялись необходимые для получения надежных данных условия. Сейчас уже не надо доказывать, что для проведения сравнения активности необходимо знание истинной поверхности образцов, но не все понимают, что получаемая таким путем удельная активность молекул секг -атом- ) еще не является достаточно надежным критерием оценки в первую очередь по двум причинам. Во-первых, потому, что единственной показательной величиной является производительность одного АКЦ молекул сек X Хцентр- ) особенно в таких случаях, как, например, при исследовании влияния носителей. Но эта последняя величина может быть известна только в том случае, если известна доля АКЦ от всех поверхностных атомов катализатора. Во-вторых, потому, что даже при определении г или Гк необходимо изучение температурной зависимости этих величин. Лишь зная параметры уравнения Аррениуса, можно уверенно говорить об общем уровне активности [105]. Дело в том, что в уравнении Аррениуса [c.87]

    Таким образом, в общем виде для данного значения [К] при заданной температуре скорость неразветвлеиной цепной реакции можно увеличить, повышая кр или I и уменьшая О или М, и понизить, действуя в обратном порядке. Скорость разветвленной цепной реакции в стационарном режиме можно увеличить, повышая кр или Р и уменьшая О или М, и снизить при противоположных изменениях этих величин. Эти возможности позволяют понять катализ и ингибирование цепных реакций. Катализатор обычно приводит к увеличению I или Р и значительно реже — к уменьшению С трудно представить себе какие-либо пути, которыми катализатор может уменьшить М, если только такой путь не включает электростатические эффекты типа изменений в диэлектрической проницаемости растворителя (см. стр. 432). В некоторых полимеризационных процессах, дающих стереорегулярные полимеры, катализатор меняет природу стадии роста цепи, но он, вероятно, влияет также и на скорость инициирования. В небольшом числе ионных реакций катализатор (или полученные из него частицы) участвует в стадии роста. Ингибитор обычно действует, увеличивая О или М и значительно реже — уменьшая Р или I. Следует отметить, что в случае разветвленных цепных реакций часто очень трудно отличить уменьшение Р от увеличения С, поскольку каждый из них приводит к одному и тому же кинетическому эффекту. Примеры, относящиеся к этим проблемам, будут рассмотрены подробно в разд. 4 гл. XI. Для неразветвленных цепных процессов существует много примеров реакций, скорость которых соответствует общим уравнениям [c.357]


Смотреть страницы где упоминается термин Катализ общие температуры: [c.147]    [c.159]    [c.286]    [c.165]    [c.404]    [c.10]    [c.193]    [c.107]    [c.355]    [c.175]    [c.106]    [c.19]    [c.228]    [c.129]    [c.102]    [c.41]    [c.167]    [c.41]    [c.45]   
Физическая и коллоидная химия (1964) -- [ c.131 ]




ПОИСК







© 2024 chem21.info Реклама на сайте