Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры полярные, температура стеклования

    Размеры макромолекул полимерных соединений настолько превышают размеры молекул низкомолекулярных веществ, что форма макромолекулы, как и химическая структура ее элементарных звеньев, оказывают решающее влияние на физические и механические характеристики материалов. Макромолекулам линейной формы свойственна высокая гибкость, приводящая к непрерывным конформационным изменениям. Чем длиннее цепи линейного полимера и больше полярность структуры его звеньев, тем выше силы их взаимного сцепления. Внешне это проявляется в большей прочности и твердости полимера, в повышении температуры размягчения и снижении текучести при повышенной температуре. Чем меньше силы межмолекулярного сцепления, тем богаче набор различных конформаций, которые может иметь макромолекула в результате тепловых колебательных движений. Большую гибкость полимерной цепи придает связь углерод — углерод. Звенья кислорода или серы, вкрапленные в углеродные цепи в ви e простых эфирных связей, способствуют усилению колебательного движения, повышая эластичность полимера, снижая температуру стеклования и размягчения. [c.763]


    Таким образом стеклование полимера связано с увеличением времени релаксации. При этом фазовый переход, т. е. качественная перестройка структуры, отсутствует. Совершенно очевидно, что химическая природа полимера — его полярность или неполярность — должна существенно влиять на процесс стеклования, так как от нее зависят энергия межмолекулярного взаимодействия и возможность перемещения сегментов. У полярных полимеров более высокая энергия межмолекулярных взаимодействий элементов структуры, поэтому при снижении температуры подвижность сегментов уменьшается быстрее, а следовательно, и стеклование наступает раньше, чем у неполярных. Действительно, с увеличением полярности температура стеклования полимеров возрастает например, температура стеклования полиизобутилена или натурального каучука (гибкие молекулы, малое межмолекулярное взаимодействие) около —70° С, у поливинилхлорида (высокое межмолекулярное взаимодействие) — уже - -80°С, а у целлюлозы (жесткие макромолекулы, высокое межмолекулярное взаимодействие) температура стеклования лежит выше температуры химического разложения, т. е. этот полимер находится только в стеклообразном состоянии. [c.108]

    Высококонцентрированные растворы полимеров, содержащие до 20—30% растворителя, отличаются от исходных полимеров пониженными температурами стеклования Т . и перехода в вязкотекучее состояние Тт Одновременно они становятся мягче и эластичнее. Концентрированные растворы полимеров, содержащие нелетучие или малолетучие растворители, называются пластифицированными полимерами, растворители в этих системах называются пластификаторами, а процесс получения пластифицированных полимеров — пластификацией. Свойства пластифицированных полимеров зависят от концентрации пластификаторов, а также формы и полярности их молекул. [c.66]

    Введение в полимер даже очень небольшого количества низкомолекулярного вещества может привести к резким изменениям его механических свойств. Изменение свойств определяется свойствами исходного полимера и прибавляемого низкомолекулярного вещества. Основное назначение низкомолекулярных веществ, вводимых в жесткоцепные полярные полимеры, — понизить температуру стеклования полимеров, сделать их более мягкими и расширить область высоко-эластичности, в которой используются полимеры. Так, поливинилхлорид при обычной температуре представляет собой очень жесткий полимер с температурой стеклования +75° С. Введением дибутилфта-лата можно снизить его температуру стеклования на 100°. Варьируя количество вводимого дибутилфталата, добиваются требуемого изменения температуры стеклования и получают материалы различной мягкости и эластичности. Таким образом, введением в жесткоцепные полимеры специальных низкомолекулярных веществ изменяют их механические свойства в желаемом направлении, что расширяет круг применяемых в технике материалов. [c.172]


    Так как жесткость макромолекул зависит от межатомных и межмолекулярных взаимодействий и резко снижается с их ослаблением, то любые факторы, ослабляющие эти взаимодействия (температура, сольватация полярных групп), вызывают снижение Гс. Очень большую роль могут оказывать даже следы веществ, способных сольватировать полярные группы полимеров. Например, температура стеклования абсолютно сухого поликапроамида составляет 69° С, а в воде она снижается до 25—30° С. Даже невысокая влажность окружающего воздуха может снизить Гс капроновых волокон на 20—30° С. - [c.168]

    Пластифицированные смолы получают, вводя в полимерные соединения пластификаторы, увеличивающие их гибкость и снижающие температуру стеклования. Пластификаторы — это низкомолекулярные нелетучие соединения с низкой температурой застывания. Эффект пластификации достигается в результате растворения низкомолекулярного вещества и полимера друг в друге, т. е. в результате проникновения и распределения пластификатора между макромолекулами полимера. Иными словами, пластифицированные материалы — очень концентрированные растворы полимеров. Из-за того, что низкомолекулярное соединение расположено между макромолекулами, изменяется структура вещества связь между цепными макромолекулами ослабляется, они приобретают подвижность и способность изгибаться, а это придает гибкость и эластичность материалу. Чтобы полимер и низкомолекулярное вещество взаимно растворились, должны быть либо оба полярными, либо оба не- [c.27]

    Температура стеклования зависит от строения и полярности полимера, влияющей как на гибкость цепи, так и на энергию межмолекулярного взаимодействия. [c.193]

    Предложены разные механизмы пластификации. По Журкову [130] температура стеклования полярных полимеров определяется взаимодействием полярных групп соседних цепей и образованием диполь-дипольных физических узлов. Пластификатором для таких полимеров является любая полярная жидкость, молекулы которой, взаимодействуя с полярными группами, экранируют их контакты. В этом случае температуры стеклования снижаются пропорционально числу молей т введенного пластификатора  [c.199]

    Первая попытка теоретического рассмотрения процесса пластификации на молекулярном уровне с учетом сложившихся воззрений [88, 89] и основанных на господствовавших в то время представлениях о структуре аморфного и кристаллического состояния полимеров принадлежит Журкову [90—92], который полагал, что стеклование, или отвердевание , полимеров происходит в результате образования прочных межмолекулярных связей — узлов между макромолекулами. Пластификатор, введенный в полимер, блокируя полярные группы, выключает их из взаимодействия друг с другом. Вследствие этого между цепями полимера образуется меньшее количество узлов, что и приводит к снижению температуры стеклования. Чем больше сорбируется полярных групп, тем значительнее депрессия температуры стеклования (АГс), причем снижение температуры стеклования полимера пропорционально числу молекул пластификатора, не зависимо от формы и размеров молекул, т. е. [c.150]

    Прямая пропорциональность между понижением температуры стеклования и числом молей пластификатора, введенного в коли-мер ( правило Журкова или правило мольных концентраций), достаточно строго соблюдается лишь для полярных низкомолекулярных веществ довольно простого строения при сравнительно небольшой их концентрации в полимере. Усложнение строения молекул пластификатора и увеличение нх количества в полимерной композиции приводит к изменению Тс полимера при одной и той же мольной концентрации пластификатора. [c.150]

    Этот процесс, вероятно, усиливается взаимодействием полярных водных растворов травителей с поверхностью подложки резиста, которое вызывает отслаивание пленки резиста от подложки К этому же приводит также набухание полимерной пленки (с уменьшением толщины пленки адгезия возрастает) и механическое напряжение в слое пленки. У негативных резистов V" = 1,0—2,6 кН/м, в то время как позитивные резисты характеризуются значениями у" = 6,0—10,6 кН/м. Значения у обоих типов резистов лежат в интервале 30—33 кН/м [142, 143]. Существуют зависимости между смачиваемостью поверхности полимера и его температурой стеклования 7 с [144]. [c.64]

    Первые работы, посвященные исследованию механизма пластификации, принадлежат С. И. Журкову. Исследуя влияние большого числа полярных и неполярных растворителей на снижение температуры стеклования различных полимеров, он пришел к выводу, что снижение температуры стеклования неполярных полимеров при их взаимодействии с неполярными растворителями пропорцио1нально весовому количеству поглощенного растворителя, следовательно, если исходить из одного и того же молярного соотношения растворителя и полимера, то температура стеклования снижается пропорционально молекулярному весу растворителя. [c.138]


    Исследование процесса возникновения зарядов проводили также при динамических режимах сжатия в процессе изменения температуры. Образцы в виде цилиндров помещали между двумя металлическими электродами и периодически сжимали с частотой 25 Гц, в режиме постоянной деформации или постоянной нагрузки [45, 46, 53]. Для изучения влияния химического строения полимеров, в частности, полярности полимеров, измерения проводили на образцах вулканизатов с одинаковой степенью поперечного сшивания на основе каучуков СКН-18, СКН-26 и СКН-40 — сополимеров бутадиена и акрилонитрила с содержанием последнего соответственно 18, 26 и 40% (масс.). В этом ряду увеличивалась степень межмолекулярного взаимодействия и температура стеклования. Из температурных зависимостей (рйс. 10) видно, что величины зарядов, индуцируемых на электродах, связаны с релаксационными переходами в полимерах. Вблизи температуры стеклования, в области максимальных механических потерь величина зарядов проходит через максимум, который сдвигается по температурной шкале вправо вслед за увеличением межмолекулярного взаимодействия в полимерах. Меры, принимаемые для исключения трибоэффекта — изменение материала электродов, смазка поверхности глицерином, не приводили к изменению результатов. По-видимому, в процессе деформации происходит накопление зарядов, что и приводит к индуцированию электрических потенциалов на электродах. Величина индуцируемых потенциалов зависит от деформационных свойств полимеров. Следует отметить, что в режиме динамического сжатия при постоянной деформации с ростом полярности вулка-низата растет модуль сжатия, одновременно растет и максимум заряда. В режиме постоянной нагрузки с ростом модуля сжатия величина максимума заряда уменьшается, так как изменение величины заряда следует за изменением работы, затрачиваемой на деформацию. [c.25]

    Температура Гц, по-види-мому, связана с температурой стеклования полимера Т разность этих температур (А Г = Го—rj должна находиться в определенных для каждого полимера пределах. Температура стеклования характеризует начало сдвига звеньев в макромолекулах и зависит не только от химического строения макроцепей и наличия полярных групп, но и от присутствия в волокне пластифицирую щих веществ, например воды, а также от натяжений сг, действующих на полимер. [c.12]

    Заключительные участки кривой вязкость — концентрация относятся скорее к области пластифицированного полимера, а не к растворам в технологическом смысле этого слова. Важная для пластифицированных полимеров зависимость температур стеклования от состава передается правилом Каргина — Малинского для неполярных полимеров, согласно которому понижение пропорционально объемной доли пластификатора, или правилом Журкова для полярных полимеров, в соответствии с которым понижение пропорционально мольной доле пластификатора. Оба эти правила являются предельными, и для большинства полимерньсх систем действительная зависимость от количества пластификатора лежит между этими двумя крайними случаями. [c.130]

    Замена алкилакрилата на алкоксиалкилакрилат или алкил-тиоалкилакрилат с равной длиной цепи (например, бутилакрплат на метоксиэтилакрилат) приводит к получению более полярных полимеров. Однако увеличение полярности в этих случаях не выбывает повышения температуры стеклования полимера, так как потенциальный барьер вращения вокруг 8—С- или О—С-сзяз,и, меньше потенциального барьера вращения вокруг С—С-связи [5]. [c.387]

    Поливинилацетат хорошо совмещается с пластификаторами, эфирами целлюлозы, фенолоформаль-дегидными олигомерами и другими полярными полимерами. Модификация поливинилацетата увеличивает его поверхностную твердость и водостойкость, Недостатком поливинилацетата яЁляется низкая теплостойкость. Теплостойкость по Вика составляет всего лишь 37—38 °С, температура стеклования 28 °С. При нагревании до 170 °С происходит его деструкция. [c.38]

    Вводи в структуру полимера различное количество звеньев, менее полярных, чем звенья основ него компонента, можно постепенно уменьшать жесткость струн -туры и, следовательно, понижап. температуру стеклования сополимера. На рис. 15 ириведенЕ.1 результаты определения температуры стеклования сополимера стирола с различным количестпом метилакрплата (кривая /). [c.46]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Прочные узлы образуются практически только мужду полярными группами, поэтому температура стеклования полимера должна быть тем выше, чем больше полярных групп имеется в цепи полимера. [c.192]

    Температура текучести полимера, так же к акт и температура стеклования, зависит от режима деформации. Поэтому сравнивать температуры текучести полимеров разного строения можно только в том случае, ес.ти они определеггьг при одних и тех же условиях (одинаковые ка[тряженн5т, скорости нагрева и др ). При этолг наблюдается определенная зависимость температуры текучести от молекулярного веса полимера, его полимолекулярпости и полярности. [c.198]

    Количественной оценкой пластифицирующего действия пл2 Tff фикатора является понижение температуры стеклования ДТс, Наиболее эффективно Это действие проявляется у полимеров с жесткими иепями в присутствии пластификаторов температура стеклования таких полимеров понижается па 100—160" С. Значительно менее эффективно пластификаторы действуют на гибкие кауч коподоб-ные полимеры температура стеклования полярных каучуков может [c.446]

    Первая попытка теоретического рассмотреР[ия.процесса пластификации принадлежит С. Н. Журкову , который связывал этот процесс с механизмом стеклования полимеров (стр. 191). Он полагал, что температура стеклования полярного полимера определяется взаимодействием полярных групп соседних цепей. Пластификатором такого полимера является полярная жидкость. Полярные группы полимера сольватируются полярными группами пластификатора, причем каждая полярная группа цепи прочно связывает 1—2 молекулы пластификатора (глава Х111). Будучи экранированы молекулами пластификатора, полярные группы соседних цепей не могут взаимодействовать между собой свободных поляр- [c.447]

    Если молекулы пластификаторов не очень сильно различаются размерами и имеют разные полярные группы ( 0Н, —СООН, >С0 и др.), из которых каждая может сольватировать одну полярную группу цепи полимера, то, очевидно, число выключенных из взаимодействия будет одним и тем же. В этом случае пониже. кие температуры стеклования ДГс должно быть пропориионально числу молей (мольному проценту) введенного пластификатора  [c.448]

    Экспериментальный материал, частично приведенный ниже (стр. 451), свидетельствует о том, что уравнение (1) не всегда соблюдается, При наличии одних и тех же полярных групп в молекуле пластификатора изменение температуры стеклования полимера зависит от размера и формы молекулы пластификатора, что проявляется еще отчетливее при пластификации неполярных полимеров неполярными пластификаторами. Так, например, при одинаковом числе углеродных атомов в молекуле линейные молекулы (м-гексан) смещают температуру стеклования полиизобутилена сильнее, чем циклические молекулы (цнклогсксан или беп.юл . [c.448]

    Уравнение (80) отображает правило мольных долей Журкова, Согласно этому правилу, снижение температуры стеклования пластифицированного полимера по сравнению с температурой стеклования исходного полимера пропорционально молярной доли введенного пластификатора. Это правило означает, что независимо от химического строения пластификатора депрессия температуры стеклования одинакова, если вводятся равные молярные доли пластификатора. Эго вполне понятно, т.к., согласно данной концепции, отверждение полимера (переход из высокоэластического состояния в стеклообразное) происходит при образовании одинакового количества межлюлекулярных связей, и если каким-либо путем вывести часть полярных групп из работы, то снижение температуры стеклования будет зависить только от количества этих групп, а не от химического строения блокирующих молею л. [c.124]

    Столь подробное изложение данной концепции связано с тем обстоятельством, что в дальнейшем, при описании расчетных методов оценки температуры стеклования полимеров, дут рассмотрены различные варианты проявления межмолекулярного взаимодействия, что сказьшается на расчетных значениях. Действительно, межмолеку лярное взаимодействие между полярными фуппами, расположенными в соседних цепях, приводит к образованию физической сетки межмолекулярных связей. Однако такое взаимодействие может осуществиться и между полярными фуппами, расположенными в одном и том же повторяющемся звене макромолекулы. Тогда эти группы выключаются из взаимодействия между соседними цепями и температура стеклования понижается. Такой же эффект будет наблюдаться и при аномальном присоединении звеньев в процессе полимеризации или сополимеризации (присоединение голова к голове или хвост к хвосту ). В этом случае межмолекулярное взаимодействие осуществляется между полярными фуппами, расположенными в соседних повторяющихся звеньях одной и той же цепи естественно, что при этом они выключаются из взаимодействия меж соседними цепя ш, что приводит к снижению температуры стеклования. Все эти вопросы будут детально проанализированы ниже. [c.126]

    Используя соотношение (84), можно рассчитать температуру стеклования офомного количества полимеров. Это связано с тем обстоятельством, что описываемый подход является атомистическим , те. каждый атом ха-рактеризу ется своим инкрементом а, (их величины приведены в табл. 13) Что же касается специфических межлюлекулярных взаимодействий (диполь-дипольные, водородные связи), то они характеризуются своими инкрементами bj, не зависящими от химического строения полярной фуппы. Так, например, диполь-дипольные взаилюдействия разных типов характеризу ются одним и тем же инкрементом = -55 10 -А К". Несколько сложнее дело обстоит с водородными связями в полиамидах, гго связано со специ([ икой их влияния на Tg в пределах данного класса полимеров (табл. 18).  [c.128]

    ТНЫХ данных по температуре стеклования. Это может быть вызвано как пением полярной фуппы, обладающей особым влиянием на энергию меж- кулярного взаимодействия, так и, наоборот, выключением какой-либо рной группы из образования сетки физических связей междз соседними ми полимера. В первом случае потребуется введение нового инкремен-, но нужно всегда помнить, что чем больше введено инкрементов в рас-ую схему, тем ее предсказательная сила становится меньше, и в предель-случае когда каждый новый полимер требует введения нового инкремен-, предсказательная сила расчетной схемы становится равной ну лю. [c.139]

    Если формально рассматривать полистирол как зал1сщенный полиэтилен, в котором один атом водорода в каждом звене замещен на фенил, то можно сделать вывод, что такое замещение приводит к снижению 7 . Это снижение может быть настолько большим, что интенсивная термическая деструкция может начинаться до достижения температуры стеклования. Так ведут себя полимеры с объемистыми боковыми заместителями, содержащими полярные Фуппы. Одним из них является полиметилиденфталид.  [c.224]

    Напротив, в слу чае слабо полярных полимеров (полиэтилен, полидиметилсилоксан и др.) температуры стскловання и плавления лежат намного ниже температуры термодеструкции. Можно подобрать такой случай (на примере полигетероарнленов), когда температуры стеклования и термической дестру к-ции будут практически совпадать. [c.226]

    В зависимости от того, проникают ли молекулы пластификатора внутрь пачек полимера или только размещаются между пачками, различают внутрипачечную и межпачечную пластификацию Обычно рассматривают два предельных случая, относящихся к пластификации полярных и неполярных полимеров. Как известно, температура стеклования полярного полимера определяется взаимодействием полярных групп соседних цепных молекул. Если в такой полярный полимер ввести полярный, хорошо совместимый с полимером пластификатор, то взаимодействие цепных молекул полимера за счет сольватации полярных групп полимера молекулами пластификатора ослабляется и полимер застекловывает-ся при более низкой температуре Если молекулы пластификаторов содержат полярные группы, каждая из которых может экранировать одну полярную грушГу в цепи полимера, можно считатьчто понижение температуры стеклования АТс пропорционально я —числу молей введенного пластификатора, т. е. АТс = кп (где к — коэффициент пропорциональности). Данное выражение, однако, не учитывает размеры и формы молекул пластификатора и во многих случаях не подтверждается опытными данными. Зависимость температуры стеклования от формы и размеров молекул пластификатора [c.173]

    При изучении стеклования полимеров неоднократно ставился вопрос об относительной роли в нем внутри- и межмолекулярных взаимодействий. Изучение методом ИК-спектроскопии раздельного изменения внутри- и межмолекулярной энергий при стекловании [122] показало, что при стекловании изменяются, главным образом, межмолекулярные взаимодействия поэтому температура стеклования существенно зависит от последних. Например, атактический полибутадиен (СКВ) имеет 7 = = 223 К. Если в цепь полибутадиена ввести полярные звенья акрилонитрила, то межмолекулярные взаимодействия возрастают и при 50 % содержании в полимерной цепи нитрильных звеньев температура стеклования становится Тст = 263 К. Все сополимеры характеризуются тем, что с изменением концентрации сомономерных групп в макромолекуле изменяется межмолекулярное взаимодействие и изменяется Тст. В бутадиенсти-рольных сополимерах при переходе от атактического полибутадиена к атактическому полистиролу Тст изменяется от 223 до 373 К. [c.194]

    Образование диполь-дипольных физических узлов влияет на температуру стеклования. Например, в бутадиеннитрильных эластомерах, где образуются диполь-дипольные поперечные связи, с увеличением числа полярных СН-групп в цепи Тст увеличивается. Для заданной концентрации дипольных групп в главной цепи с увеличением длины боковых привесков, напротив, Тст уменьшается, что наблюдалось в ряду полимеров поливинилового (ПВ) ряда ПВ — метилэфир ПВ — этилэфир, ПВ — пропилэфир, ПВ — бутилэфир. Одновременно с снижением Та, в этом ряду (при частоте у = 2-10 Гц) от 339 К ДО 270 К уменьшается и плотность полимера от 1,03 до 0,91 г-см , что приводит к уменьшению диполь-дипольных взаимодействий между главными цепями вследствие увеличения межмолекулярных расстояний. Этим объясняется снижение температур структурного Тст и механического Гд стеклований. [c.244]


Смотреть страницы где упоминается термин Полимеры полярные, температура стеклования: [c.126]    [c.15]    [c.482]    [c.310]    [c.55]    [c.523]    [c.25]    [c.192]    [c.194]    [c.195]    [c.138]    [c.225]    [c.419]    [c.420]    [c.192]   
Технология синтетических пластических масс (1954) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Стеклование полимеров

Стеклование полимеров температура

Температура полимеров

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте