Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цистеин с водой

    По окончании гидролиза ампулу охлаждают до 4°, вскрывают, содержимое фильтруют через фильтр с отверстиями 0,22 мкм, НС1 упаривают в роторном испарителе с однократным добавлением 1 мл воды при температуре около 40°. Сухой остаток растворяют в 1 мл воды и нейтрализуют добавлением нескольких капель пиридина (дО pH SS 6,5), а затем нагревают до 105° и выдерживают 1 ч при этой температуре для обеспечения превращения цистеина в цистин. Затем раствор снова упаривают досуха и растворяют в 1 — 2 мл исходного буфера (pH 2,2). [c.526]


    Определение по реакции с цистеином Промытый осадок нитрокобальтиата калия растворяют в 0,2 мл a N соляной кислоты, раствор выпаривают досуха Остаток растворяют в 1 мл 12,5%,-ного раствора пирофосфата калия, добавляют 1 мл свежеприготовленного раствора 3,5 мг хлоргидрата цистеина и 1,5 мл 0,1%-ной перекиси водорода Разбавляют водой до 5 Л1Л, и желтую окраску сравнивают с окраской стандарта [1271,2497, 2594] [c.100]

    Смесь 7 г (0,020 моля) Ы-карбобензокси-5-бензол-/-цистеина, 4,6 г (0,020 моля) хлоргидрата метилового эфира /-тирозина, 100 МА этилацетата (примечание 1) и 5 г этоксиацетилена кипятят с обратным холодильником. Приблизительно. через 1 час большая часть твердого вещества (хлоргидрата эфира тирозина) переходит в раствор. Слабо-желтый раствор охлаждают и разбавляют 25 МУ1 этилацетата. Затем его последовательно промывают 20 МУ1 холодной 0,5 н. соляной кислоты, 20 мл холодного 5%-ного раствора поташа и, наконец, 20 мл воДы, сушат сульфатом натрия и упаривают в вакууме (температура бани ниже 60°) (примечание 2). [c.195]

    Было показано, что введение глицерина, ПЭО-400 и ПЭО-1500 в растворы белков приводит к заметному увеличению параметров ho/h+j и ho/h.j спектров ЭПР спиновой метки 7, ковалентно связанной с SH Фуппой цистеина или остатком гистидина на поверхности макромолекул изучаемых белков. Т , спиновой метки 7 на белках увеличивалось в ряду глицерин < ПЭО-400 < ПЭО-1500. Нами было показано, что уменьщение подвижности спиновой метки на макромолекулах иммуноглобулина и гемоглобина связано с непосредственным взаимодействием молекул изучаемых вспомогательных веществ с поверхностью макромолекул белков. Это приводит к уменьщению конформационной подвижности поверхностной водно-белковой матрицы изучаемых белков, а также к дегидратации поверхности белковых глобул и изменению количества связанной воды на поверхности изученных макромолекул. [c.562]

    Исследуемый материал растворяют в 6 М мочевине при pH 7,2 и добавляют меркаптоэтанол в 10-кратном молярном избытке по отношению к содержанию цистеина. Смесь перемешивают при комнатной температуре в течение 3 ч, затем к ней добавляют иод- или бромацетат в 50—100-кратном молярном избытке по отношению к цистину, содержащемуся в исследуемом образце, оставляют на 2 ч при комнатной температуре и на сутки при 4°С. После этого раствор диализуют против дистиллированной воды для удаления мочевины. [c.166]

    Белковые осадки, полученные при действии солей тяжелых металлов, нерастворимы в первоначальном растворителе (в воде и слабых растворах солей), т. е. реакция необратима. Соли тяжелых металлов полностью осаждают и денатурируют белки. Этими реакциями пользуются для освобождения растворов от белков. Соли тяжелых металлов одновременно с белками осаждают и другие азотистые вещества. Доказано, например, что ряд аминокислот (лейцин, фенилаланин метионин, триптофан, цистеин) образуют с медью труднорастворимые соли. [c.41]


    Цистеин-5 солянокислый представляет собой смесь (1- и /-изомеров цистеина с молекулярным весом 157 и т. пл. 178° С. Это бесцветные иглы, хорошо растворимые в воде, этиловом спирте и нерастворимые в эфире, бензоле. [c.12]

Рис. УП.9. Типы взаимодействия между цепочечными белковыми молекулами, а - водородные связи между цепями б - иопиые связи между [руппами к о - изаимодейстиия между неполярными группами Я, создающие области, из которых вытесняется вода, — тип взаимодействия в клеточных менбранах г - дисульфидная связь между двумя остатками цистеина (Су8). Рис. УП.9. <a href="/info/233442">Типы взаимодействия</a> между цепочечными <a href="/info/19563">белковыми молекулами</a>, а - <a href="/info/1321277">водородные связи между цепями</a> б - иопиые <a href="/info/26849">связи между</a> [руппами к о - изаимодейстиия между <a href="/info/101679">неполярными группами</a> Я, создающие области, из которых вытесняется вода, — тип взаимодействия в клеточных менбранах г - <a href="/info/143988">дисульфидная связь</a> между двумя остатками цистеина (Су8).
    Сера входит в состав некоторых важнейших аминокислот. Так, в молекуле цистсина содержится группа 8Н. При определенных условиях из двух молекул цистеина образуется ци-стин — в нем остатки цистеина связаны между собой дисуль-фидной связью (8 — 8). Эти связи необходимы для придания белковым молекулам определенной конфигурации. Переход 8—8 8Н осуществляется в процессах переноса водорода в клетках. Этот обратимый процесс служит организму защитой от радиационного поражения улавливаются радикалы Н-и ОН-, появляющиеся в клетках при расщеплении воды под действием радиации. Цистин образуется при гидролизе белков, образующих покровные ткани (из волос, шерсти, рогов и т. д.). [c.182]

    Так как при гидролизе пептида получался только 1 моль цистеина и реакция на меркаптогруппу была положительной только после восстановления Sm b, то сера, очевидно, должна находиться в легко рас-крыааем01м цикле. Бацитрацин А содержит тиазолиновый цикл, образовавшийся при отщеплении воды от группировки изл—цис(5Н)—лей, что было до1казацо наличием в гидролизате последовательности изл— —цис (SH)—лей и тем, что в продукте окисления и гидролиза присутствовало соединение Сд, обладающее поглощением ч ультрафиолетовой области, характерным для тиазола. [c.703]

    ЦИТОХРОМ с, хромопротеид, построенный из полипептидной цепи, к к-рой ковалентными связями присоединен гем (в образовании связей участвуют два остатка цистеина). Содержится в митохондриях всех аэробных клеток и участвует в окислит, фосфорилировании, передавая электроны от цитохрома Ь к цитохромоксидазе (при этом Fe в ге-ме превращается в Fe +). Изучена структура Ц., выделенных из разл. организмов напр., полипептидная цепь Ц. млекопитающих построена из 104 ами юкислотных остатков. ЦИТРАЗИ НОВАЯ КИСЛОТА (2,6-диоксипиридин-4-карбоновая к-та), све-тло-серые крист. ( л 317 °С (с разл.) не растворяется в воде и спирте, хорошо растворяется в водных р-рах щелочей. [c.687]

    В основе метода динитрофенилирования лежит реакция свободных ЫНг-групп белка или пептида с 2,4-динитрофторбензолом (ДНФБ) в щелочной среде, при которой образуются соответствующие динитрофенильные производные (ДНФ-производные). В реакцию с ДНФБ, кроме свободных а-ЫНг-групп, вступают также е-ННг-группа лизина, 5Н-группа цистеина, ОН-группы оксиаминокислот и имидазольный гетероцикл гистидина. ДНФ-производное белка или пептида подвергают полному кислотному гидролизу. Ы-концевые ДНФ-амино-кислоты экстрагируют из гидролизатов эфиром, отделяя их от свободных аминокислот и ДНФ-производных по другим функциональным группам аминокислот, которые растворимы в воде. Идентификацию [c.145]

    Помимо а- и е-аминогрупп дансилхлорид вступает в реакцию с ОН-группами тирозина, 5Н-группами цистеина и имидазольными кольцами гистидина (два последних соединения неустойчивы при щелочных значениях pH), а также с аммиаком, растворенным в воде. При взаимодействии ДНС—С1 с аммиаком образуется дансилсульфо-намид (ДНС-ЫНг). При щелочных значениях pH, дансилхлорид подвергается гидролизу с образованием дансилсульфоновой кислоты (ДНС—ОН). После окончания реакции дансилирования модифицированный белок или пептид подвергают кислотному гидролизу. Боль- [c.148]

    Так же, как и в случае цинк-энзимов, основными лигандами иона меди при формировании активного сайта являются имидазольные фрагменты гис-тидиновых остатков белков их может быть до четырех на один атом металла. В качестве дополнительных лигандов выступают фрагменты тирозина, аргинина и цистеина белковой цепи, молекулы воды. Более слабые координационные связи ион меди образует [c.357]

    С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]


    В растворе 9 г солянокислого /-цистеина в 2 л буферного расгвора, состоящего из 0,5 М раствора уксусной кислоты и 0,5 М буферного раствора ацетата натрия, растворяют 155,5 г (0,75 моля) N ацетил-З-фенилаланина при нагревании до 50°. Полученный раствор смешивают с 80 г (0,75 моля) п-толуидина и 150 мл раствора папаина (примечание 3), разбавляют до 3 л буферным раствором и нагревают при температуре 40° в течение 7 дней (pH 4,6), после чего выдерживают смесь при температуре 5° в течение 2 час. Выпавший ге-толуиднд Ы-ацетил-3-/-фе-нилалапина отделяют, промывают 1 л воды и сушат на воздухе (примечание 4). Выход 102—106 г (92—95%), т. пл. 215—217°. Дальнейшую очистку проводят перекристаллизацией из 1,25 л горячего 96%-ного спирта. Полученные кристаллы промывают 500 жл холодного спирта. Выход 86—89%, т. пл. 219°, [ 1 0 + 35 Г (с = 4, в пиридине). [c.240]

    Полипептиды, так же как и сами аминокислоты, амфотерны и каждому свойственна своя изоэлектрическая точка. Они представляют собою соединения, промежуточные между аминокислотами и белками, — в условиях кислотного и щелочного гидролиза и те и другие распадаются на аминокислоты. Низшие полипептиды кристалличны, растворимы в воде по мере перехода к более высокомолекулярным полипептидам способность к кристаллизации ослабевает. Полипептиды могут также включать моно-аминодикарбоновые кислоты, подобные аспарагиновой и глутаминовой. Тогда они приобретают кислотные свойства за счет второй карбоксильной группы. Полипептиды, образованные с участием диаминокислот, имеют основной характер. Свойства полипептидов, образованных с участием серина ( -окси-а-аминопропионовой кислоты) и цистеина ( -меркапто-а-аминопропионовой кислоты), отражают наличие ОН- и соответственно SH-групп. Некоторые полипептиды играют важную биологическую роль в живых организмах. Таков, папример, трипептид глутатион [c.506]

    В методе анализа аминокислот и пептидов, предложенном Бови и Тайерсом [78], в качестве растворителя используется трифтор-уксусная кислота. Преимущества этого растворителя по сравнению с водой или 020 в том, что он позволяет точно определить значения химических сдвигов. Трифторуксусную кислоту можно использовать и в качестве стандарта. Для этого приготавливают ее растворы с концентрацией 207о (вес/объем). Глицин, цистеин и цистин менее растворимы в этой кислоте, однако можно получить и их спектры. В анализе, описанном в работе [78], спектры были получены при частоте 40 МГц. Анализируемые растворы приготавливали, растворяя 100 мг анализируемого соединения в [c.306]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    Механизм действия сульфгидрильных протеаз — папаина, фпцина и бромелаина — принципиально аналогичен изображенному на рис. 6.3. В роли акцептора ацильной группы здесь выступает сульфгидрильная группа входящего в состав активного центра остатка цистеина. Об этом свидетельствуют данные, полученные при изучении действия химических ингибиторов и рН-зависимости каталитической реакции (группа с р/Са 8,4 появляется на стадии ацилирования, а не на стадии деацилирования), а также тот факт, что методами спектроскопии в ацил-ферменте была обнаружена сложная тиоэфирная связь. При замене воды на оксид дейтерия катализируемые папаином реакции проявляют значительный кинетический изотопный эффект следовательно, лимитирующей стадией является перенос протона. О химической природе группы, выступающей в роли общего основного катализатора, мы уже говорили выше. Поскольку сложные тиоэфиры легче взаимодействуют с аминами, чем с кислородными сложными эфирами, папаин является лучшим катализатором реакции транспептидации по сравнению с химотрип-сином. [c.146]

    Аскорбиновая кислота содержит два асимметричных атома углерода в 4-м и 5-м положениях, что позволяет образовать четыре оптических изомера. Природные изомеры, обладающие витаминной активностью, относятся к Ь-ряду. Аскорбиновая кислота хорошо растворима в воде, хуже—в этаноле и почти нерастворима в других органических растворителях. Из представленных структурных формул видно, что наиболее важным химическим свойством аскорбиновой кислоты является ее способность обратимо окисляться в дегидроаскорбиновую кислоту, образуя окислительно-восстановительную систему, связанную с отщеплением и присоединением электронов и протонов. Окисление может быть вызвано различными факторами, в частности кислородом воздуха, метиленовым синим, перекисью водорода и др. Этот процесс, как правило, не сопровождается снижением витаминной активности. Дегидроаскорбиновая кислота легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной (и даже в нейтральной) среде происходит гидролиз лактонового кольца, и эта кислота превращается в дикетогулоновую кислоту, лишенную биологической активности. Поэтому при кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается. Аскорбиновая кислота оказалась необходимым пищевым фактором для человека, обезьян, морских свинок и некоторых птиц и рыб. Все другие животные не нуждаются в пищевом витамине С, поскольку он легко синтезируется в печени из глюкозы. Как оказалось, ткани витамин-С-чувствительных животных и человека лишены одного-единственного фер- [c.238]

    В. Л. Кретович и А. А. Бундель разработали быстрый метод определения аспарагиновой и глютаминовой кислот, который основан на том, что активированный, подкисленный оксид алюминия адсорбирует аспарагиновую, глютаминовую кислоты и цистин. Другие аминокислоты, которые проходят через хроматографическую колонку, этим адсорбентом не задерживаются. Цистин вымывают из колонки дистиллированной водой, насыщенной H2S (цистин при этом восстанавливается в цистеин, а оставшиеся дикарбоновые кислоты последовательно элюируют). Установлено, что глютаминовая кислота, адсорбированная на AI2O3, при элюировании слабым раствором кислоты быстрее передвигается по колонке, чем аспарагиновая. В полученных элюатах определяют азот методом Кьельдаля. [c.23]

    Об интенсивности протеолиза можно судить по количеству исчезнувшего субстрата или по количеству продуктов гидролиза. Для определения протеолитической активности ферментов в качестве белкового субстрата используют препараты эдестина, яичного альбумина, желатина, казеина и др. Вытяжку готовят, настаивая исследуемый материал на воде, водном растворе глицерина, а также на слабокислом или слабош,елочном буферных растворах. Иногда настаивание бывает довольно продолжительным. В отдельных случаях при настаивании материала с водой применяют активаторы, например цистеин, HaS, цианид и др. Такое же активирование применяют и в опытах по автолизу. При определении активности протеаз учитывают, что в вытяжках могут быть активаторы и парализаторы. [c.69]

    Прямым потенциометрическим титрованием с помощью серебряно-сульфид-ного электрода были определены цистеин в 0,1 М растворе гидроксида натрия, тиогликолевая кислота в 1,0 М растворе гидроксида натрия и 2-меркаптоэтапол и 3-меркаптопропионовая кислота в 1,0 или в 5,0 М растворе гидроксида на-- трия. Такие высокие концентрации щелочи оказались необходимыми для быстрого проведения анализа. В условиях эксперимента окисление этих тиолов было незначительным. Кроме того, благодаря щелочи поддерживались постоянными pH и ионная сила растворов. Воду очищали деионизацией и последующей перегонкой. [c.541]

    Содержащиеся в радикалах ,а-аминокислот другие ноногенньк группы способны к ионизации при различных значениях pH Например, фенольная гидроксильная группа в тирозине ионизи рована при pH 10,1 тиольная группа в цистеине — при pH 8,1 — 8,3 и т. д. В целом ни одна а-аминокислота in vivo не находится t своей изоэлектрической точке и не попадает в состояние, отве чающее наименьшей растворимости в воде. Таким образов а-аминокислоты в организме находятся в ионной форме. [c.330]

    Пространственная структура зависит не от длины полипептидной цепи, а от последовательности аминоютслотных остатков, специфичной для каждого белка, а также от боковых радикалов, свойственных соответствующим аминокислотам. Пространственную трехмерную структуру или конформацию белковых макромолекул образуют в первую очередь водородные связи, а также гидрофобные взаимодействия между неполярными боковыми радикалами аминокислот. Водородные связи играют огромную роль в формировании и поддержании пространственной структуры белковой макромолекулы. Водородная связь образуется между двумя электроотрицательными атомами посредством протона водорода, ковалентно связанного с одним из этих атомов. Когда единственный электрон атома водорода участвует в образовании электронной пары, то протон притягивается соседним атомом, образуя водородную связь. Обязательным условием образования водородной связи является наличие хотя бы одной свободной пары электронов у электроотрицательного атома. Что касается гидрофобных взаимодействий, то они возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды, которая вытесняется на поверхность белковой глобулы. По мере синтеза белка неполярные химические группировки собираются внутри глобулы, а полярные вытесняются на ее поверхность. Таким образом, белковая молекула может быть нейтральной, заряженной положительно или же отрицательно в зависимости от pH растворителя и ионо-генных групп в белке. К слабым взаимодействиям относят также ионные связи и ван-дер-ваальсовы взаимодействия. Кроме того, конформация белков поддерживается ковалентными связями 8—8, образующимися между двумя остатками цистеина. В результате гидрофобных и гидрофильных взаимодействий молекула белка спонтанно принимает одну или несколько наиболее термодинами-чесю выгодных конформаций, причем, если в результате каких-либо внешних воздействий нативная конформация нарушается, возможно полное или почти полное ее восстановление. Впервые это показал К. Анфинсен на примере каталитически активного белка рибонуклеазы. Оказалось, что при воздействии мочевиной или р-меркаптоэтанолом происходит изменение ее конформации и, как следствие, резкое снижение каталитической активности. Удаление мочевины приводит к переходу конформации белка в исходное состояние, и каталитическая активность восстанавливается. [c.35]

    Радиохимический состав определяют методом восходящей бумажной хроматографии в системе трет-бут-ловый спирт — муравьиная кислота — вода (70 15 15). После обработки высушенной хроматограммы 2%-ным раствором нингидрина в ацетоне бумажную полоску выдерживают 5 мин при температуре 100° С в термостате. При этом проявляются пятно цистеина-S ( /= = 0,43—0,55) и пятно цистииа-S (jR,. = 0,15). Просчет полосы показывает, что 90% всей радиоактивности находится в пятне цистеина-S , на долю цистина-S приходится 5%. Остальные 5% принадлежат дорожке , расположенной между пятнами цистина и цистеина. Двумерной хроматографией показано, что дорожка возникает вследствие окисления цистеина-S в процессе хроматографирования. [c.14]


Смотреть страницы где упоминается термин Цистеин с водой: [c.47]    [c.696]    [c.320]    [c.523]    [c.195]    [c.486]    [c.290]    [c.210]    [c.210]    [c.231]    [c.244]    [c.588]    [c.293]    [c.412]    [c.226]    [c.314]    [c.350]    [c.224]    [c.576]    [c.322]    [c.350]   
Введение в радиационную химию (1967) -- [ c.259 , c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Цистеин



© 2025 chem21.info Реклама на сайте