Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород синтезе азотной кислоты

    Пероксидные соединения, главным образом пероксид водорода и надуксусная кислота (а в последнее время—и гидро-пероксиды), получили применение как окислительные агенты в основном органическом и нефтехимическом синтезе сравнительно недавно. Ввиду относительной дороговизны их используют только для таких реакций, которые не протекают под влиянием молекулярного кислорода или азотной кислоты. Это относится прежде всего к процессам эпоксидирования ненасыщенных соединений  [c.354]


    NO-монооксид азота, бесцветный газ, практически не растворяется в воде, реагирует с кислородом (продукт-NO2), образуется при взаимодействии разбавленной азотной кислоты с диоксидом серы, а в природе-при грозовых разрядах (N3 + Oj 2NO), является промежуточным продуктом в промышленном синтезе азотной кислоты из аммиака  [c.137]

    Метод нитрования окислами азота, который начал разрабатываться еще в 70-х годах прошлого столетия, приобрел актуальное значение лишь с 1910—1915 гг. в связи с освоением химической промышленностью синтетических методов получения азотной кислоты из атмосферного азота через окислы азота. Начиная с этого периода, проблема использования окислов азота (нитрозных газов) для нитрования органических соединений привлекает усиленное внимание исследователей, которые посвящают ей значительное число работ. Это объясняется главным образом тем, что метод нитрования окислами азота обладает определенным техническим преимуществом перед обычно принятыми методами нитрования азотной кислотой и нитрующими смесями, так как при его применении устраняется необходимость в переработке окислов азота в азотную кислоту (как известно, синтез азотной кислоты из окислов азота представляет собой довольно сложный процесс и состоит в окислении кислородом низших окислов азота до азотного ангидрида в присутствии воды и получении, таким образом,слабой азотной кислоты,которая затем концентрируется при помощи И 2804). [c.334]

    Абсорбционные и хемосорбционные процессы весьма распространены и применяются в производстве серной, соляной, азотной, фосфорной кислот, аммиака, кальцинированной соды, при переработке коксового газа и газов нефтепереработки, при очистке промышленных газов (коксового, нефтяного, генераторного и др.), в технологии основного органического синтеза (разделение газообразных углеводородов, получение формальдегида, дивинила, получение ацетилена из метана и т. д.), в производстве целлюлозы, при концентрировании газов и т. д. Хемосорбция является важным этапом ряда синтезов в жидкой фазе, например прямой синтез азотной кислоты происходит путем хемосорбции кислорода раствором четырехокиси азота в азотной кислоте под давлением процессы оксосинтеза основаны на хемосорбции водорода и окиси углерода жидкими олефинами с образованием альдегидов и кетонов. [c.114]


    Установка для прямого синтеза азотной кислоты из нитрозных газов схематически представлена на рис. 38. Нитрозный газ для производства концентрированной азотной кислоты концентрацией 10—11,5 об.%, полученный окислением аммиака кислородом воздуха при атмосферном давлении, поступает в скоростной холодильник 6 для выделения воды из нитрозных газов при снижении их температуры с 473 до 308—313 К. Образующаяся при этом 3—5%-ная азотная кислота выводится из системы. [c.104]

    Исходя из уравнения реакции для осуш,ествления прямого синтеза азотной кислоты необходимо иметь жидкую двуокись азота, кислород и слабую азотную кислоту. [c.257]

    Повышение давления способствует полному протеканию ее, так как газом здесь является только кислород, и вследствие связывания почти всей воды получается кислота высокой концентрации. Такой способ получения называется прямым синтезом азотной кислоты. [c.79]

    Особенности прямого синтеза азотной кислоты. При взаимодействии двуокиси азота, воды и кислорода в автоклаве, при давлении 50—60 ата образуется концентрированная 98-процентная азотная кислота  [c.108]

    Кислота такой же концентрации может быть получена в результате обработки жидких окислов азота кислородом под давлением 50 кгс/см в присутствии воды. Для этого метода прямого синтеза азотной кислоты не требуется серной кислоты, но необходима специальная установка для получения кислорода путем разделения воздуха. Себестоимость концентрированной кислоты, полученной методом прямого синтеза из окислов азота, примерно на 15% выше стоимости кислоты, получаемой путем перегонки с серной кислотой. [c.88]

    Азотную кислоту в виде 40—60%-ного водного раствора применяют для окисления циклических соединений и веществ с ненасыщенными связями. Перекисные соединения, главным образом перекись водорода и надуксусную кислоту, используют как окислительные агенты в основном органическом и нефтехимическом синтезе для реакций, компоненты которых не реагируют с молекулярным кислородом. [c.106]

    В производстве азотной кислоты перед контактным аппаратом аммиак смешивается с кислородом в соотношении 1 2 при синтезе формальдегида перегретые до высокой температуры пары метанола смешиваются с кислородом. При термоокислительном пиролизе в смесителе смешиваются предварительно нагретые до 600—700 °С метан и кислород. [c.214]

    Прямой синтез из неконцентрированной азотной кислоты, кислорода и жидкой двуокиси азота под давлением [c.147]

    Пример . Составить материальный баланс автоклава для синтеза концентрированной азотной кислоты из жидких окислов азота, воды и кислорода при следующих условиях его работы. [c.315]

    Полиметилбензолы, за исключением дурола, необходимо окислять в жидкой фазе. Причем без применения полярного растворителя можно окислить с высоким выходом только одну метильную группу. Для получения поликарбоновых кислот окисление следует вести 30—50%-ной азотной кислотой (окисление углеводорода или монокарбоновой кислоты) либо кислородом воздуха в среде полярного растворителя (например, при использовании универсального МС-процесса). Последнее направление является основным в синтезе поликарбоновых кислот бензольного ряда. Окислением в газовой фазе можно получать только пиромеллитовый ангидрид из дурола, остальные полиметилбензолы окисляются с очень низкой селективностью, переходя в продукты полного сгорания. [c.88]

    В основе прямого синтеза концентрированной азотной кислоты лежит взаимодействие жидкого тетроксида азота с водой и газообразным кислородом под давлением 5 МПа, протекающее по уравнению  [c.234]

    Пример. Газовую смесь объемом 1000 м с объемной долей азота и водорода 25% и 75% соответственно под давлением 200-10 Па при температуре 500°С пропустили через колонну синтеза. Выход аммиака составил 12%. Далее весь аммиак был окислен избытком кислорода воздуха (катализатор платина). Получившаяся азотная кислота растворилась в воде, образовавшейся в результате реакции. Определите массовую долю (%) азотной кислоты в растворе и массу раствора. [c.126]

    Жидкие газы, как известно, удобнее транспортировать. Они широко применяются в металлургической и химической промышленности, а также в технике и научных лабораториях для получения низких температур и для других целей. Сжижением воздуха с последующей возгонкой получают кислород и азот, которые в дальнейшем используются при получении азотной кислоты и азотных удобрений. При этом сначала синтезируют аммиак из азота и водорода (эти газы находятся в установках для синтеза под высоким давлением), а затем уже аммиак окисляют кислородом до получения азотной кислоты и т. д. [c.24]


    При окислении циклогексана кислородом воздуха (100°С, 5-10 —6-105 Па) образуется смесь циклогексанола и циклогексанона. Прн дальнейшем окислении этой смеси азотной кислотой получают адипиновую кислоту, необходимую для синтеза найлона. Напишите уравнения реакций. [c.122]

    В природе А. образуется при разложении органических веществ, содержащих азот. В промышленности А. получают прямым синтезом его из азота и водорода при температуре около 550° С и под давлением 35 10 Па на железном катализаторе. С воздухом и кислородом А. образует взрывоопасные смеси. Жидкий А. вызывает на коже тяжелые ожоги, очень опасен для глаз. А. используют для производства азотной кислоты, солей аммония, карбамида (мочевины), цианистоводородной кислоты, кальцинированной соды, в органическом синтезе, для приготовления нашатырного спирта, в холодильных установках, для азотирования стали и др. А. и соединения аммония применяют как удобрения. Жидкий А. растворяет щелочные и щелочноземельные металлы, образующие в нем темно-синие растворы с металлическим блеском. [c.23]

    Оксид азота может быть получен действием восстановителей, например, HoS, HI и других, на нитриты в кислом растворе восстановлением умеренно концентрированной азотной кислоты металлами окислением аммиака непосредственным синтезом из азота и кислорода воздуха. [c.532]

    Оксид азота (II) N0 может быть получен, как уже отмечалось, прямым синтезом из азота и кислорода. В промышленности азотной кислоты его получают окислением аммиака кислородом в присутствии катализатора  [c.257]

    Впервые явление катализа было открыто в 1806 г. Н. Клеманом и Ш. Дезормом в камерном процессе получения серной кислоты. Они установили каталитическое действие оксидов азота на скорость окисления SO . В конце XIX в. промышленным методом получения серной кислоты стал контактный способ, основанный на окислении SOj кислородом в присутствии платинового катализатора. В настоящее время вместо дорогостоящих платиповых катализаторов успешно работают оксидные смеси (например, VjOj с K2SO4). Каталитическим способом проводят промышленный синтез аммиака (N ) + 3 (Н ) —> 2 (NH.,), где в качестве катализатора используют железо, промо-тированное оксидами алюминия и калия. Синтез азотной кислоты осуществляют с помощью каталитического окисления аммиака в присутствии платинового катализатора. [c.179]

    На рис. 1У-2А ирипсдсна схема прямого синтеза азотной кислоты из нитрозного газа, полученного окислением аммиака кислородом воздуха при атмосферном давлении. Газ, содержащий N0, [шступаст и скоростной холодильник 5, где из него выделяется вода при снижении температуры от 200 до 35—40 С. Об рёзуюншрся при этом 3—5%-пая азотная кислота выводится из системы. [c.170]

    Образование смеси макроциклических комплексов при синтезе их из свободных лигандов является частым осложнением Наряду с уже упомянутыми 10H0- и гюлиядерными комплексами могут образоваться соединения, отличающиеся конформацией координированного лиганда, распределением анионов во внутренней и внешней координационной сфере, а также спиновым состоянием центрального атома Окисление или восстановление координированного иона металла можно достигнуть как химическими, так и электрохимическими методами. В качестве окислителей наиболее часто используют кислород и азотную кислоту. Для окисления комплексов металлов VHI группы часто применяют также NO IO4 и галогены Окисление может происходить также в результате реакции диспропорционирования, обычно сопровождающейся выделением металла Такие процессы особенно характерны для комплексов серебра [90] Восстановление проводят с помощью водорода, многочисленных органических восстановителей, а также тех металлов, которые не способны заместить в исходном соединении центральный атом Следует отметить, что окислительно-восстановительные реакции комплексов могут сопровождаться изменением структуры лиганда. [c.35]

    Используя простой прибор (см. стр. 303), Кавендиш исследовал действие электрического разряда на воздух. Изогнутая под острым углом стеклянная трубка, заполненная воздухом, была погружена концами в два сосуда с ртутью. Над ртутью в обоих коленах трубки было налито немного раствора едкого кали. Ртуть одного из сосудов соединялась при помощи проводника с кондуктором электростатической машины, ртуть второго сосуда — с землей. Для опытов бралась искусственная смесь из пяти частей дефлогистированного воздуха (кислорода) и трех частей обычного воздуха, через которую пропускались электрические искры. При этом объем воздуха в трубке постепенно уменьшался (в результате образования окиси, а затем двуокиси азота, растворявшейся в щелочи), пока не остался небольшой пузырек, не поддававшийся далее действию электрических разрядов. В щелочном растворе над ртутью Кавендиш обнаружил селитру. Таким образом, он впервые осуществил синтез азотной кислоты из воздуха. [c.303]

    Длй десорбции и переработки окислов азота в концентрированную кислоту необходимо дополнительное оборудование отбелочные колонны с конденсаторами двуокиси азота, автоклавы с насосами и компрессорами для кислорода, аммиачно-холодильную станцию и цех разделения воздуха для производства кислорода. На установках, работающих под повышенным давлением, после отделения избытка реакционной воды (в этом случ № будет получаться 30%-ная HNO3) можно путем охлаждения нитрозных газов рассолом получать жидкие окислы азота с примесью HNO3 и воды> Их целесообразно перерабатывать непосредственно в концентрированную азотную кислоту, а оставшиеся слабые нитрозные газы направлять в абсорбционную колонну для получения разбавленной азотной кислоты. Таким образом, различие схем производства HNO3 сводится к методам получения жидких окислов требуемого состава, а собственно процесс синтеза азотной кислоты из N2 4 и воды под давлением 50 кгс/см в присутствии кислорода во всех случаях остается одинаковым. [c.430]

    Прямой синтез азотной кислоты. Этот метод предусматривает непосредственное получение концентрированной азотной кислоты из нитрозных газов окисления аммиака. При этом исключаются процессы получения слабой азотной кислоты, ее концентрирования, упаривания серной кислоты. Процесс заключается в том, что окись азота, содержащаяся в нитрозных газах, окисляется, получается N02, которая при охлаждении примерно до —8° С переходит в жидкое состояние с образованием N204. Прямой синтез азотной кислоты из жидкой N204 протекает при взаимодействии ее с водой и кислородом  [c.110]

    Сульфат аммония получают из синтетического аммиака и серной кислоты. Естественно, что с началом синтеза аммиака на заводе в Нобэока началось массовое производство и сульфата аммония. Кроме того, получение при синтезе больших количеств сухого аммиака и аммиачной воды позволило, не ограничиваясь производством сульфата аммония, проникнуть в новые отрасли и развить их. Первым шагом в этом направлении явилось производство синтетической азотной кислоты. Синтез азотной кислоты происходил путем сселения чистого аммиака, который получали по методу Казале. При этом кислород, использовавшийся для окисления, получался в виде побочного продукта при электролизе воды, основное назначение которого состояло в выделении водорода — сырья для производства аммиака. Вопросы, связанные с синтезом азотной кислоты, исследовал в лабораторных условиях работник завода Нобэока Рикидзо Мураяма в 1926 г., а в 1930 г. было пущено в ход соответствующее промышленное предприятие. [c.37]

    Процесс заключается в том, что окись азота, содержащаяся в нитрозных газах, окисляется, получается N02, которая при охлаждении примерно до —8°С переходит в жидкое состояние с образованием N204. Прямой синтез азотной кислоты из жидкой N204 протекает при взаимодействии ее с водой и кислородом  [c.113]

    Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную а-, л-связь N = 0, в твердом состоянии димер N202 со связью N — N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отнощению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. Весьма реакционноспособна смесь N0 и N02 ( нитроз-ные газы ). Промежуточный продукт в синтезе азотной кислоты. [c.171]

    Как известно, получение окиси азота из азота и кислорода воздуха в электрической дуге с последующим получением азотной кислоты было осуществлено еще в конце XVIII в. и получило значительное применение в промышленности в начале XX в. (до внедрения более экономичных процессов синтеза аммиака и окисления его п азотную кислоту). До сих пор продолжаются опыты применения электроразрядов (перекрестных и др.) в синтезе азотной кислоты для повышения экономичности процесса и выхода продукта. Известен способ получения озона вз кислорода воздуха в электрическом разряде. Опытами установлена возможность окисления таким же способом двуокиси серы в трехокись. Метан и ряд нефтепродуктов расщепляются (крекируются) в электрической дуге с получением ацетилена и т. д. [c.115]

    В производстве азотной кислоты применяют, перерабатывают и получают взрывоопасные и токсичные вещества (аммиак, природный газ, оипслы азота, азотную кислоту, нитритные и нитратные соли). Поэтому нарущения технологического режима и правил техники безопасности могут привести к а) образованию взрывоопасной смеси аммиака с воздухом в контактных аппаратах, смесителях, коммуникациях и ее взрыву б) загазованности производственных помещений, территории предприятия аммиаком и окислами азота и интоксикации ими людей в) образованию взрывоопасной смеси природного газа с воздухом и взрыву ее в аппаратуре и производственных помещениях г) образованию и отложению нитрит-нитратных солей и их взрыву в нитрозных вентиляторах, турбокомпрессорах, в аппаратуре и коммуникациях узла розжига контактного аппарата и др. д) образованию взрывоопасной газо- или паровоздущной смеси в отделении концентрирования слабой азотной кислоты при подаче избыточного количества жидкого или газообразного топлива в топки концентраторов несвоевременное зажигание топлива может привести к взрыву в топке е) воспламенению замасленной поверхности и необезжиренной аппаратуры и коммуникаций при прорыве кислорода из системы получения кон-ценгрированной азотной кислоты прямым синтезом или при подаче его в загрязненную органическими веществами аппаратуру  [c.40]

    Создание новых процессов, базирующихся на более доступном или дешевом сырье, обычно является результатом от-кр1ития новых реакций и нередко оказывает революционизирующее влияние на развитие технологии. В отношении ископаемого сырья — это уже отмеченное выше перебазирование органического синтеза с каменного угля на нефть и газ. Постепенное исчерпание месторождений нефти и газа рано или поздно должно привести к возвращению на твердое топливо, что серьезно скажется на всей структуре технологии, В отношении пяти главных групп исходных веществ для органического сннтеза выявилась тенденция замены дорогостоящего ацетилена па низшие олефины и даже парафины, а а чкже усилоииое развитие синтезов на основе СО и Нг, которые могут базироваться иа угле. В других случаях разрабатываются ноЕые процессы с заменой сырья сии )тов на олефины, фосгена на ди( ксид углерода, дорогостоящих окислителей (хромпик, пероксид водорода, азотная кислота) на кислород и воздух, различных восстановителей на водород и т. д. К этому же вопросу относится ра .работка прямых методов синтеза, исключающих расход кислот илн щелочей, например прямая гидратация олефинов вместо сернокислотной при синтезе спиртов и т. д.  [c.18]

    Большое значение имеет адипиновая кислота НООС—(СНа),—СООН — одно из исходных веществ для синтеза ценного синтетического волокна — найлона. Исходным веществом для синтеза адипиновой кислоты служит бензол его гидрируют до циклогексана, последний кислородом воздуха в присутствии катализаторов окисляют с образованием смеси циклогексаиола и циклогексанона. Эту смесь далее окисляют азотной кислотой  [c.208]


Смотреть страницы где упоминается термин Кислород синтезе азотной кислоты: [c.106]    [c.447]    [c.435]    [c.166]    [c.169]    [c.56]    [c.160]   
Курс технологии связанного азота (1969) -- [ c.341 , c.346 ]




ПОИСК







© 2025 chem21.info Реклама на сайте