Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность методом измерения импульса

    Процесс образования тумана при смешении газов используется в технике для измерения малых концентраций паров и, в частности, паров 50з. Сущность метода измерений состоит в том, что исследуемый пар переводят в фазу видимой аэрозоли (тумана), после чего, зная степень пересыщения и пропорции разбавления, рассчитывают исходную концентрацию ЗО . Появление тумана и его плотность измеряют фотоэлементом. Для образования тумана может использоваться подмешивание холодного воздуха или газа, вступающего в химическую реакцию с исследуемым веществом. Так, для содержащего ЗОз сухого воздуха могут использоваться водяные пары, приводящие к образованию аэрозолей серной кислоты. Добавка к дымовым газам аммиака приводит к образованию сульфата аммония ( ЫН4)2504, который при температурах ниже 100°С выделяется в форме кристаллической аэрозоли. Чувствительность метода относительно невелика, но может быть повышена до 10 — 10 мг/м при использовании метода подсчета импульсов света отдельных частиц, пролетающих через луч света. Импульсы поступают на фотоумножитель и регистрируются счетчиком. [c.229]


    Посредством искусственного увеличения времени электронной задержки в частотно-импульсных схемах можно получить режим их работы, при котором двукратно отраженный импульс не будет накладываться на фронт прямого импульса, а будет поступать раньше или позднее его. В импульсных схемах этого же эффекта можно добиться определенным соотношением времени распространения и периода запуска импульсов. В обоих случаях для исключения ложного срабатывания схемы применяется отсечка двукратно отраженного импульса. Для этого необходимо, чтобы амплитуда прямого импульса мало изменялось в процессе эксплуатации прибора. Однако в производственных условиях вследствие колебаний температуры, концентрации, плотности контролируемой жидкости и содержания газовых пузырьков в ней амплитуда ультразвуковой волны может уменьшаться в десятки раз. Поэтому в устройствах, основанных на методе измерения скорости ультразвука с использованием частотно-импульсной и импульсной схем, должно выполняться неравенство (4-6). [c.181]

    Благодаря улучшению метода измерений нри переменном токе, применению потенциостатических измерений при замыкании цени и особенно благодаря введению метода двойных импульсов ( 103), Геришеру удалось определить плотности тока [c.676]

    В [71] описана конструкция импульсного спектрометра для измерения времени релаксации в диапазоне от 1 до 100 мксек при изменении температуры образца от 1 до 20° К при плотности спинов 10 см . В этом приборе используется только один клистрон. Время нарастания импульса составляет 0,1 мксек и менее [70] авторы этой работы дали хороший анализ импульсной схемы и метода измерения. [c.403]

    Размеры частиц для исследования выбирают из следующих соображений. При а >3-4 мм гидродинамическое сопротивление частиц недопустимо большое, а чувствительность измерений низкая. Изготовление частиц размером < 1 мм, имеющих одинаковую с жидкостью плотность, сопряжено с большими техническими трудностями. При а < 0,01 мм импульс тока, индуцируемый частицей во внешней цепи, оказывается соизмеримым с уровнем шумов схемы и осуществить уверенную индикацию его крайне сложно. На основании экспериментальных данных по колебанию жидких проводящих частиц (эвтектика К-Ка) в гептане показано, что жидкие частицы с а < 1.4 мм, совершая колебания между электродами при высоких напряженностях поля, не разрушаются. По-ви-димому, данный метод может стать перспективным при создании некоторых преобразователей электрических и неэлектрических величин в импульсный сигнал, удобный для последующей обработки, в том числе и в процессах, связанных с очисткой неполярных жидкостей. [c.24]


    В 1-м способе используется метод очень быстрого заряжения электрода с применением токов большой плотности. При этом растворенный водород не успевает продиффундировать за время импульса тока к поверхности. Этот метод быстрого заряжения широко применяется в электрохимической практике, например, для измерения емкости двойного слоя, для изучения адсорбции на электродах различных неорганических и органических веществ. Так, если вещество способно окисляться или восстанавливаться, то, накладывая импульс тока, можно окислять или восстанавливать только адсорбированное вещество и по количеству электричества, затраченного на его окисление или восстановление, судить о величине адсорбции на электроде. [c.61]

    В импульсных методиках, основанных на адсорбционном вытеснении, корректный выбор скоростей развертки потенциала V или плотностей тока г также предполагает выявление области V или г, где величины AQ практически не зависят от времени импульса (общий вид зависимости подобен представленному на рис. 1.4). В исследованиях с промывкой электрода применимость метода адсорбционного вытеснения ограничивается тем, что он может быть использован лишь для хемосорбированного вещества или той его части, которые не восстанавливаются (не окисляются) с заметными скоростями в интервале потенциалов, используемых в ходе измерений. [c.16]

    В импульсных методах быстро выводят хим. систему из состояния равновесия резким изменением одного из термодинамич. параметров (т-ра, давление и др.), от к-рых зависит скорость изучаемых р-ций. При этом концентрации реагентов в новых условиях уже не являются равновесными и начинают изменяться в сторону нового равновесия. Иногда принудительно быстро изменяют концентрации реагентов при фиксир. внеш. условиях и наблюдают за процессом их возвращения к равновесным значениям. Для контроля концентрации в-в измеряют пропорциональные им физ. величины-оптич. плотность, интенсивность люминесценции, электрич. проводимость и т.д. Миним. доступное измерению время релаксации (т. наз. разрешающее время) определяется наименьшей возможной длительностью воздействующего импульса, к-рое для нек-рых методов достигает 10 с. Макс. время релаксации практически не ограничено. [c.235]

    Из-за отмеченных выше недостатков и невысокой точности измерения при низких концентрациях (< 10 моль/л) хронопотенциометрия находит ограниченное применение в решении аналитических задач. В аналитической практике она применяется в тех же целях, что и полярография, но более редко. В то же время она широко используется в исследовательских целях для изучения кинетики электродных процессов. Для этого, в частности, с успехом применяется импульсный гальваностатический метод с регистрацией зависимости E(t) в течение коротких промежутков времени (< 10 с) после включения токов большой плотности. Чтобы уменьшить время, затрачиваемое на заряжение двойного электрического слоя, используют двухимпульсный гальваностатический режим вначале на электрод подают импульс тока i большой амплитуды длительностью 1-2 мкс, который заряжает двойной слой, а затем ток мгновенно уменьшают до величины /2. [c.395]

    Наблюдаемый молекулярный поток обычно оказывается меньше (Ра-<1), чем для случая, когда отражение от стенок было бы полностью диффузным [3.65, 3.68, 3.76—3,84]. Автор работы [3.77] предположил, что такое уменьшение потока может быть обусловлено рассеянием молекул на неровностях очень шероховатой стенки пор, даже если каждый элемент этих неровностей рассеивает диффузно. Девис и др. [3.81] поддержали эту гипотезу п первую теоретическую модель де Маркуса [3.80], воспроизводящую измеренные плотности потока. Они применили метод Монте-Карло к простым геометрическим моделям капилляров при размерах внутренней шероховатости до 15 /о радиуса капилляра плотпости молекулярного потока могут быть на 20% меньше, чем в случае диффузного отражения от гладких стенок. Таким образом, тангенциальная составляющая импульса сохраняется в среднем по направлению, противоположному плотности потока. Этот эффект мох<ет быть очень существенным внутри малых пор газодиффузионного фильтра. Это кажущееся обратное отражение от очень шероховатых поверхностей может быть представлено в теории молекулярного течения соответствующим граничным условием на гладкой стенке. Такое граничное условие может быть сформулировано с помощью коэффициента аккомодации тангенциального импульса, большего единицы [3.52, 3.85], или с помощью коэффициента обратного рассеяния, заеденного Берманом [3.82] по аналогии с максвелловским коэффициентом зеркального отражения 1—/. Если / — доля диффузно рассеянных молекул и 1—f — доля обратного рассеяния, то коэффициент 3к в формуле (3.29) для длинного капилляра круглого [3.82] или кольцевого [3.83] сечения будет [c.65]

    Для учета неселективного поглощения этим способом лампу с полым катодом поочередно питают импульсами тока малой и большой мощности. В первом случае излучаются узкие резонансные линии определяемого элемента, и измеренное в этот момент поглощение соответствует сумме сигналов атомной абсорбции и фона. Длительность маломощных импульсов тока составляет 50-500 мкс при скважности импульсов до 10 и интегральной силе тока через лампу, соответствующей средней силе тока для режима постоянного тока (импульсная сила тока — до 100 мА). В режиме импульсов большого тока имеет место самообращение линий, излу чаемых лампой с полым катодом, и в этом режиме измеренное поглощение, в основном, обусловлено фоном в области расположения аналитической линии. Средняя сила тока через лампу с полым катодом в режиме самообращения в четыре и более раз превышает ток в режиме излучения узких линий (до 1 А в импульсе). Достоинства метода — простота и удобство реализации, возможность учета структурированного фона и широкий диапазон учета неселективных помех (до оптической плотности 3,0). [c.831]


    Преимущество второго метода заключается в том, что численный результат измерения поступает непосредственно в конце интервала времени прохождения, и поэтому может быть обеспечена большая частота следования импульсов и достигается большая скорость или плотность контроля. Напротив, при первом методе нужно дополнительно учитывать постоянную времени аналого-цифрового преобразования. [c.219]

    Кондуктометрический метод производственного контроля интересен тем, что изменение состояния контролируемой системы проявляется в виде электрических импульсов. Электрические импульсы могут быть переданы непосредственно исполнительному механизму, что облегчает автоматическое управление процессом. Электропроводность раствора зависит от всех присутствующих в нем компонентов и является поэтому интегральным свойством системы. Сочетание измерения электропроводности с определением какого-либо другого интегрального (например, плотности) или специфического (например, величины pH) свойства раствора позволяет осуще- [c.130]

    Систематическая ошибка за счет сдвига по времени, определенная уравнением (9.14), возникает во всех случаях, когда распространение импульса х 1) по тракту системы происходит не мгновенно, а измерения выполняются синхронно (рис. 9.2). Смещение может быть особенно большим при расчете функций когерентности на основе широко распространенного сейчас метода быстрого преобразования Фурье (БПФ), согласно которому оценки спектральной плотности находятся путем усреднения по ансамблю оценок, построенных по многим относительно коротким реализациям (см. разд. 3.4.2). Однако этой ошибки легко избежать, заранее оценив вероятные задержки по времени в трактах системы и вводя соответствующие сдвиги между реализациями до начала анализа. Как правило, современные анализаторы оборудованы нужными для этой цели устройствами. [c.227]

    Дополнительное оборудование для детектирования предназначено для измерения изменений концентрации, вызванных импульсами излучения. Чаще всего применяются спектрофотометрические системы детектирования. С их помощью можно достигнуть весьма высокой чувствительности, однако отношение полезного сигнала к шуму остается небольшим. В работах Кине [65, 77] обсуждаются технические вопросы, связанные с применением спектрофотометрических систем детектирования, и трудности в применении фотоэлектрических датчиков при импульсном радиолизе. В последнее время возможности спектрофотометрического метода регистрации изменений концентрации при импульсном радиолизе расширились благодаря усовершенствованию аппаратуры. Так, например, использование специальных электронных схем позволяет измерить изменение оптической плотности, составляющее всего 1 часть на 10 — 10 [78]. Путем применения последовательности импульсов оказывается возможным быстрое сканирование спектра в широком диапазоне длин волн, а специально подобранный монохроматор позволяет одновременно следить за неустойчивыми продуктами при нескольких длинах волн. [c.127]

    Благодаря тому, что в нормальной импульсной полярографии очень коротко время между моментом наложения импульса и моментом измерения тока, в этом методе, по определению С. Б. Цфасмана, лучше используется плотность тока, чем в классической полярографии [14]. Высота волны (в микроамперах) на НИП при продолжительности импульса 40 мсек и задержке 2 сек в 7 раз превышает высоту волны на классической поляро-грамме. [c.107]

    Полная идентификация частицы по ее следу в эмульсии может потребовать целого ряда измерений. Если природа частицы известна и пробег ее целиком укладывается в эмульсии, то, естественно, используя соответствующее данной эмульсии соотношение пробег — энергия и зная длину трека, можно найти энергию частицы. Частицы умеренных скоростей V С с), треки которых оканчиваются в эмульсии, можно идентифицировать по длине трека и плотности зерен, поскольку последняя пропорциональна удельной ионизации. Плотность зерен меняется от -3000 1/сл для минимально ионизирующих частиц до величины примерно в 500 раз большей, при которой наступает насыщение. Энергии наиболее слабо ионизирующих частиц можно вычислить по плотности б-лучей (см. гл. IV,. раздел А). Для частиц высоких энергий (V с) одним из наиболее важных методов является измерение среднего угла рассеяния на единицу длины пробега средний угол многократного рассеяния частицы с импульсом р обратно пропорционален ри, т. е. полной энергии Е. Трудность применения магнитных полей для отклонения движущихся в эмульсиях частиц представляет собой один из главных недостатков метода ядерных эмульсий — треки всегда слишком коротки для того, чтобы можно было приме- [c.153]

    Заключительный этап расчета состоит в вычислении коэффициентов приведенных вьппе разложений и, таким образом, в получении окончательных формул для коэффициентов переноса. Мак-Корт [152] развил вариационный принцип, на основе которого можно рассчитать коэффициенты переноса, однако расчет не завершил. Он проделал первую итерацию описанного выше разложения по а и получил вьфажения для коэффициентов в этом приближении. Он обнаружил, что вид коэффициентов сдвиговой вязкости, объемной вязкости и теплопроводности не отличается от найденных методом Ванг Чанг—Уленбека. Для коэффициентов вращательной диффузии 0 =1, 2, 3) и Л были получены новые выражения. Все другие коэффициенты в этом приближении оказались равными нулю. Интересная особенность всех этих расчетов состоит в том, что интегралы, входящие в выражения для новых коэффициентов, нельзя свести к интегралам, содержащим сечение рассеяния (11.4.8). Вернее, они содержат комбинации г-матриц и операторов момента импульса /. Появление таких новых сечений будет иметь серьезное значение для дальнейшего рассмотрения. Если бы озникла возможность измерить коэффициенты вращательной диффу-взии, то анализ этих данны дал бы гораздо больше информации о природе межмолекулярного взаимодействия, чем дают современные измерения коэффициентов переноса. Действительно, даже простой учет этих новых свойств значительно расширяет возможности получения информации из измерений коэффициентов переноса. К сожалению, на сегодняшний день не существует экспериментальных методов измерения плотности момента импульса и неясно, возможно ли оно во-обше. Правда, очень похожие эффекты наблюдаются в газе, находящемся в магнитном поле измеряя коэффициенты переноса в этих условиях, можно получать сведения, подобные только что описанным. [c.345]

    Приборы СКВ объединения Аналитприбор (СКВ АП). В мутномере ТВ-346, как и в анализаторе АМС-У, использована равновесная мостовая схема, но с оптической компенсацией в измерительном канале, что улучшает светотехнические условия работы прибора. Действие прибора для подсчета количества взвешенных в воде частиц ФПУ-1 основано на регистрации импульсов рассеянного отдельными частицами света при прохождении ими ярко освещенного объема измерительной кюветы. В приборе для измерения цветности воды ЦВ-201 измеряется разность оптических плотностей воды в коротковолновой (400—440 нм) и длинноволновой (660— 700 нм) областях видимого спектра при разных длинах измерительной и компенсационной кювет, что позволяет исключить влияние на результат измерений изменения мутности воды. Принцип действия анализатора содержания фтора в воде АФ-297 основан на определении изменения интенсивности окраски воды при добавлении к ней ализарин-циркониевого индикатора. В автоматическом титрометре для определения щелочности воды дискретного действия ТАД-1ф-01 используется метод объемного ацидиметрического титрования с фотометрической фиксацией момента изменения в точке эквивалентности окраски добавленного в нее смешанного индикатора. Титрующий раствор кислоты подают при помощи ишриц-дозатора. [c.831]

    В настоящей работе методом малоуглового рассеяния рентгеновских лучей исследована молекулярная структура гептана и четыреххлористого углерода в жидком состоянии. Измерение угловой зависимости интенсивности рассеяния углеводородами выполнено на дифрактометре КРМ-1 с программным устройством в GuZa-излучении, в интервале углов 0,5 10 —3,5 10" paд при температуре 293 К. Для каждого угла рассеяния регистрировалось не менее 3 10 импульсов. Сглаживание кривых рассеяния проведено па ЭВМ методом частотного фильтрования [9], после чего вносилась поправка на коллимационные искажения [10]. Радиусы инерции (Rg) областей неоднородности электронной плотности определены по методу Гинье [11] из величины углового коэффициента зависимости 1п/(е) от и методом многократного рассеяния [12]. Максимальный размер и форма рассеивающих частиц определены по положению максимумов функции рассеяния [13] и асимптотическому поведению интенсивности малоуглового рассеяния/(е ") [14]. [c.114]

    Большинство металлов и согласованно испаряемых соединений имеют малые равновесные давления при обычных температурах подложки Г. Следовательно, величина Рг во много раз больше равновесного давления р (T a). Известно, что если пар сильно пересыщен по отношению к темпе ратуре подложки, то конденсация происходит обычно с = 1. Тогда состав пленки сплава или металлокерамической пленки определяется давлением рг-компонентов соединения на подложке. Контроль состава пленки можно осуществлять тогда по непосредственному измерению плотности частиц в потоке пара с помощью ионизационного метода [23 , 240, 245],, резонанса на кристалле кварца [238, 250], электромагнитного микробаланса [253] или методов, чувствительных к передаче импульса от соударяющейся частицы [243, 244]. Два контролирующих датчика располагают таким образом, чтобы каждый регистрировал поток пара только от одного из испарителей. Для получения необходимой скорости конденсации вруч ную подбирают температуры испарителей или же для автоматической подстройки на желаемом уровне используют электрический сигнал от датчика. Система обратной связи в соединении с ионизационным датчиком поэ воляет контролировать состав пленок с точностью в пределах 1...2% [240, 245]. [c.117]

    В н идких системах посредством мощного импульса света все молекулы переводятся из состояния Зо в состояние Т . Измерение оптической плотности при помощи зондирующего луча сразу после окончания импу.тьса позволяет приравнять концентрацию триплетных мо.чекул к исходной концентрации [13]. Если при увеличении интенсивности света оптическая плотность для всех длин волн не изменяется, то это служит доказательством справедливости сделанного допущения. Этим методом были получены спектры Т—Т-поглощения и коэффициенты экстинкции в области от 200 до 1000 нм для ряда ароматических углеводородов [14, 15]. Гелий-кадмиевый лазер был применен для определения ет ряда красителей [16]. Если условия эксперимента не позволяют перевести все молекулы в состояние Т , то измеряется уменьшение оптической плотности А ) в полосе поглощения З1 Зд. Концент-ряция триплетных состояний п определяется из равенства АХ) = = /гед/, где ез — коэффициент экстинкции поглощения 81 <— Зо, I — толщина слоя. Лазерное возбуждение применялось и в этом варианте метода [17]. [c.10]

    Для измерений скорости затухания флуоресценции требуются иные методы вследствие значительно более короткого времени жизни. Предельное разрешение по времени, возможное с помощью механических фосфороскопов, ограничено примерно 10 сек при максимально достижимой скорости порядка 10 ООО о51мин. Измерение более короткого времени требует применения безынерционных затворов, основанных на использовании различных электрооптических и магнитооптических эффектов. Наилучшим известным прибором является, по-видимому, ячейка Керра с нитробензолом время срабатывания составляет примерно 10 сек. Для работы этого устройства требуется подать электрический импульс напряжением в несколько тысяч вольт. Затвор другого типа основан на создании в кювете, наполненной водой, ультразвуковой стоячей волны. Чередующиеся области высокой и низкой плотности действуют в совокупности подобно быстро перемещающейся дифракционной решетке, модулируя таким образом падающий световой пучо . В этом методе обычно используют фазочувствительный детектор, а время жизни определяют по сдвигу фазы между синусоидально модулированным возбуждающим светом и периодически изменяющейся флуоресценцией. Более подробные сведения даны в обзоре Вотерспуна и Остера [35]. [c.90]

    Измерение интенсивности рассеяния рентгеновских лучей уксусной кислотой и уксуснокислыми растворами хлорида, нитрата, ацетата лития и ацетатов натрия и калия производилось на дифрактометре типа УРС-50 ИМ, по методу накопления количества импульсов за определенные промежутки времени. Обработка экспериментальных данных осуществлялась по общему плану, разработанному Шиловым, Горбуновой и Баталиным [28] с применением ЭВМ типа М220-М. Вычисление кривых радиального распределения (КРР) молекулярной плотности производилось по формуле  [c.53]

    При изучении адсорбции метилового спирта методом потенциостатических катодных импульсов в работах Багоцкого и,Васильева [126] использовалась скорость развертки потенциала г 40в/сек. При гальваностатических измерениях в аналогичных условиях плотность тока выбиралась равной 0,06 а/см [98], что оказывалось достаточным для выполнения первого условия. В растворах, насыщенных этиленом и ацетиленом, согласно Гильману [116], необходимо применять скорости развертки порядка 300 в сек. При г <60 в сек результаты явно искажаются из-за восстановления и десорбции адсорбированных этилена и ацетилена. Адсорбция пропана методом катодных гальваностатических импульсов исследовалась Браммером и сотр. [127] при использовании плотностей тока порядка 100—200 ма см . [c.167]


Смотреть страницы где упоминается термин Плотность методом измерения импульса: [c.676]    [c.680]    [c.91]    [c.32]    [c.500]    [c.205]    [c.206]    [c.33]    [c.117]    [c.139]    [c.268]    [c.84]    [c.164]   
Газовый анализ (1955) -- [ c.0 ]

Газовый анализ (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Импульс

Метод плотностей

Плотность, измерение



© 2025 chem21.info Реклама на сайте