Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород, ионизация

    Повышение концентрации сероводорода в водных средах значительно больше влияет на проникновение водорода в сталь, чем на общую коррозию. Кроме того, на проникновение водорода в зависимости от температуры влияют ионизация железа, перенапряжение водорода, соотношение адсорбции и десорбции водорода, диффузия водорода в металл. [c.148]


    Молекула сульфида водорода H2S имеет угловую форму ( HSH = = 92°, (isH = 0,133 нм), поэтому она полярна (ц = 0,34 Кл м). Способность образовывать водородные связи у HjS выражена слабее, чем у НзО. Поэтому сероводород в обычных условиях — газ (т. пл.— 85,6°С, т. кип. — 60,75°С). Собственная ионизация H2S в жидком состоянии [c.325]

    Представления о влиянии сероводорода на электродные реакции основаны на предположении образования промежуточных соединений, играющих роль поверхностных катализаторов. Так, усиление анодной реакции ионизации железа сероводородом, согласно механизма, предложенного Иофа 3. А., описывается схемой [c.17]

    Поскольку выход ядра дислокации а поверхность является центром травления, повышение плотности дислокаций в металле должно сопровождаться снижением перенапряжения ионизации металла. Места скоплений дислокаций влекут за собой образование мест локального растворения металла и возникновение концентраторов напряжений. Несмотря на то, что электрохимическое растворение металлов не лимитирует работоспособность конструкции, эксплуатируемой в средах, содержащих сероводород в условиях действия растягивающих нагрузок, роль анодного процесса связана с образованием концентраторов напряжений на поверхности стали с повышением ее хрупкости. При этом чем сильнее повышается хрупкость стали, тем активнее сказывается роль участков локального растворения металла — концентраторов напряжений, тем скорее разрушается сталь. [c.29]

    Молекула сульфида водорода HjS имеет угловую форму, Z.HSH = =92°, dsH = l,33 А, поэтому она полярна ( х=1,02 D). Способность образовывать водородные связи у H2S выражена слабее, чем у Н2О. Поэтому сероводород в обычных условиях — газ (т. пл.—85,6°С, т. кип. —60,75°С). Собственная ионизация H S в жидком состоянии [c.352]

    Сероводород растворим в воде 1 объем воды при 0° растворяет 4,62 объема, а при 20°—2,4 объема газа. Этот раствор называют сероводородной водой. Он обладает свойствами кислот окрашивает синий лакмус в красный цвет, содержит водород, способный замещаться металлами, и т. д. Поэтому раствор сероводорода в воде можно назвать сероводородной кислотой. Это очень слабая кислота (степень ее диссоциации в децинормальном растворе всего лишь 0,07%). Константы ионизации Кг = 9,1 Кг  [c.503]


    Поэтому в сероводороде водородные связи практически отсутствуют в любом агрегатном состоянии. Собственная ионизация сероводорода ничтожна и ионное произведение его [Н38+КНЗ 1 = 10 В воде ионизация сероводорода на много порядков больше  [c.324]

    Для металлов группы железа сероводород ускоряет протекание как катодного, так и анодного процессов и стимулирует наводороживание. Усиление анодной реакции ионизации железа описывается схемой [c.21]

    Способность образовывать водородные связи у H2S выражена слабее, чем у Н2О. Поэтому сероводород в обычных условиях — газ (т. пл. -85,б°С. т. кип. -60,75°С). Собственная ионизация H2S в жидком состоянии [c.355]

    Сероводород — бесцветный газ тяжелее воздуха, обладающий неприятным запахом. Он очень токсичен. Отравляющее действие сероводорода объясняют его взаимодействием с железом гемоглобина. При этом функция гемоглобина как переносчика кислорода нарушается или вовсе парализуется. Химическое строение H2S аналогично строению воды, если не учитывать малую степень гибридизации орбиталей атома серы. Молекула H2S намного менее полярна, чем молекула воды, вследствие того, что ОЭО серы меньше, чем кислорода. Поэтому в сероводороде водородные связи практически отсутствуют в любом агрегатном состоянии. Собственная ионизация сероводорода ничтожна, и его ионное произведение [HaS JpS"] = 10 . В воде ионизация сероводорода [c.441]

    Авторы предполагают, что в результате сорбции на электроде ионизация сероводорода увеличивается, и образовавшиеся при этом ионы водорода пере- [c.401]

    Неэмпирический расчет молекулы сероводорода был проведен только в одноцентровом приближении [4]. Одноцентровые орбиты представлены в виде линейной комбинации атомных орбит, отнесенных к атому серы. При этом предполагается, что электроны атомов водорода также оккупируют одноцентровые орбиты. Одноцентровое приближение значительно упрощает расчет, однако только в некоторых случаях оно дает вполне удовлетворительные результаты. Результаты расчета иллюстрируются следующими цифрами длина связи S—Н 2,509 (2,525 ), валентный угол 89°24 (92°13), дипольный момент 0,6789 (0,362), потенциал ионизации 0,3506 (0,384), полная энергия 397,5891 (—400, 81) 14]. Все величины даны в атомных единицах. Потенциал ионизации определен не как разность энергий нейтральной и ионизированной молекулы [14], а как энергия одной из внешних орбит. Данные по энергии диссоциации не приводятся, но можно ожидать, что они дали бы значительное расхождение с опытом. [c.238]

    По механизму, предложенному Иофа [194], усиление анодной реакции ионизации железа сероводородом объясняется следующей схемой  [c.295]

    Как видно, ускорение анодной реакции ионизации металла сероводородом аналогично действию 0Н , так как в обоих случаях на поверхности металла возникает катализатор. [c.295]

    Представления о влиянии сероводорода на электродные реакции основаны на предположении образования промежуточных соединений, играющих роль поверхностных катализаторов. Так, усиление анодной реакции ионизации железа сероводородом. [c.8]

    Образующийся комплекс разлагается, и сероводород регенерируется. При образовании хемосорбированного катализатора Ре (Н8 )адс на поверхности металла прочная связь атомов железа с серой приводит к ослаблению связи между атомами металла и облегчению их ионизации. К такому же результату приводит снижение приэлектродной концентрации ионов двухвалентного железа в результате взаимодействия их с сульфидами по реакции [c.9]

    Если оба протона связаны с одним и тем же атомом, вторая константа ионизации может составлять даже меньше, чем 1/100 000 от первой. Так, от молекулы воды второй протон вообще не отщепляется для селенида водорода отношение второй константы к первой составляет 10" а для сероводорода — 10" . [c.178]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Сераорганические соединения входят в состав большинства нефтей. Башкирские нефти и продукты их переработки высокосернистые. Кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов [ 1 ]. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ) [2], которые определяют специфику взаимодействия веществ с растворителями, [c.269]


    Образующийся комплекс разлагается, и сероводород регенерируется. При образовании хемосорбированного катализатора Ре(Н5 )адс на поверхности металла прочная связь атомов железа с серой приводит к ослаблению связи между атомами металла, что и облегчает их ионизацию. К этому же приводит снижение приэлектродной концентрации ионов двухвалентного железа в результате в заимодействия их с сульфидами по реакции Ре ++ + Н5 ->-Ре5 + Н+. При этом происходит сдвиг электродного лотенциала железа в отрицательную сторону, что ведет к увеличению скорости анодного процесса коррозии, Механизм действия сероводорода на катодную реакцию имеет вид  [c.17]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Аналитические реакции сульфит-иона SOj". Сульфит-ион SO3 и гидросульфит-ион HSO3 — анионы двухосновной нестабильной в водных растворах сернистой кислоты H2SO3, которая при ионизации по первой стадии является кислотой средней силы (pATj = 1,85), а по второй — очень слабой (р 2 = 7,20). В водных растворах сульфит-ионы бесцветны, подвергаются гидролизу, являются сильными восстановителями (уже в водных растворах они медленно окисляются кислородом воздуха до сульфатов). Однако некоторые сильные восстановители, например, металлический цинк в кислой среде, могут восстанавливать сульфиты до сероводорода H2S. Сульфит-ион обладает довольно эффективными комплексообразующими свойствами как лиганд. [c.425]

    Водород в соединениях с неметаллами поляризован положительно. Поскольку он сам является неметаллом, эти соединения сравнительно малополярны. Даже соединения с галогенами, например НС1, представляют собой почти идеально ковалентную молекулу. Если допустить образование положительного иона водорода при взаимодействии с сильно электроотрицательными элементами (что маловероятно из-за большого потенциала ионизации), образующиеся соединения должны быть малополярными в результате исключительно высокого по [яризу-ющего действия Н. Таким образом, соединения водорода со степенью окисления +1 — малополярные ковалентные вещества. Они летучи по той простой причине, что между молекулами действуют слабые ван-дер-ваальсовы силы или водородная связь. Прочность межатомных связей и термическая устойчивость летучих гидридов зависят в первую очередь от ОЭО и размера атома второго элемента, с которым связан водород. Как видно из рис. 133, внутри группы прочность связей Н—Э уменьшается сверху вниз. В этом же направлении возрастает атомный размер второго элемента и уменьшается его ОЭО. Оба фактора действуют в направлении уменьшения прочности связи Н—Э. За небольшими исключениями внутри периода с ростом порядкового номера Э прочность связи Н—Э возрастает из-за увеличения ОЭО и уменьшения размера Э. Если же взять два элемента с одинаковой ОЭО, более тяжелый образует менее устойчивый летучий гидрид. Так, например, устойчивость метана выше, чем сероводорода, хотя углерод и сера характеризуются одинако- Рис. 133. Энергия связи в летучих водо-ВОЙ ОЭО. родных соединениях [c.297]

    Увеличение скорости анодного процесса ионизации железа под действием сероводорода можно объяснить образованием поверхностного катализатора (РеН25)адр в результате взаимодействия адсорбированных молекул сероводорода с поверхностными атомами железа по реакции [c.65]

    Существует несколько способов описания этих отклонений от идеальной 100%-ной ионизации. Одним из них является использование коэффициента i Вант-Г оффа, соответствующего кажущейся диссоциации растворенного вещества, которое находится в растворе определенной концентрации. В табл. 12.5 приведены значения коэффициента i Вант-Гоффа для некоторых растворов для идеальной полностью ионизованной соли его значение равно 2. По существу коэффициент Вант-Г оффа указывает эффективное чиСло ионных или молекулярных частиц, образующихся из единицы молекулярного количества растворенного вещества этим эффективным числом растворенных частиц и определяются осмотические свойства раствора, изменение его температур кипения и замерзания, а также другие свойства. Уксусная кислота СН3СООН и сероводород HjS в растворе очень мало диссоциированы на ионы (см. гл. 15), и поэтому коэффициент i Вант-Гоффа для них лишь немного превышает единицу. [c.219]

    Предполагают [2], что различие в скоростях абсорбции СО2 и НдЗ ьызвано неодинаковыми скоростями диффузии этих газов в растворах сульфида. карбамината и карбоната аммония. Однако правильнее объяснить это положение, вероятно, можно, основываясь на том, что сероводород сразу же ионизируется в растворе, образуя ионы Н8 и Н+, которые быстро реагируют с ионами гидроксила. Двуокись углерода же сначала взаимодействует с водой, образуя угольную кислоту, которая после ионизации реагирует с аммиаком. Скорость реакции гид])атации очень мала, она, по-видимому, и является стадией, определяющей скорость суммарного процесса. [c.72]

    Аналогично действие водородных ионов на ионизацию сернистого водорода. Произве, хение растворимости сернистой меди равно 8,5 а сернистого цинка 1,2-10 - . Осаждение как сульфида меди, так и сульфида цинка происходит практически полностью в растворе, не содержащем избытка водородных ионов. Однако в процессе осаждения металла из его солей сероводородом, если не принимать специальных. мер (например, не вести осаждение в буферном растворе), образуется избыток водородных ионов согласно уравнению  [c.65]

    Особенно заметное послеосаждение наблюдается при разделении металлов путем их осаждения в виде сульфидов. Так, сульфид цинка, принадлежащий к группе сульфида аммония в качественном анализе, проявляет заметную тенденцию носле-осаждаться на сульфидах группы сероводорода. В разбавленных растворах минеральных кислот (0,1—0,3 н.) сульфид цинка в действительности нерастворим, но, несмотря на это, он остается в пересыщенном растворе до тех нор, пока не появятся центры кристаллизации по-видимому, это связано с очень низкой концентрацией ионов сульфида и даже гидросульфида в кислом растворе. Кристаллы другого сульфида, например сульфида меди или висмута, вызывают послеосаждение сульфида цинка 54, так как сероводород адсорбируется в состоянии более сильной ионизации, чем обычно ему свойственно, благо- [c.206]

    Механизм действия этих соединений объясняют возникновением в электролите формальдегида (или тиокарбамида), который вступает во взаимодействие с сероводородом и образует тиоформ-альдегид, нолимеризующийся на поверхности металла. Считают, что многие органические добавки способны вступать в химическое взаимодействие с сероводородом, образуя на поверхности металла нерастворимые соединения, представляющие своеобразный фазовый барьер. В частности, подобными добавками являются альдегиды, которые в кислой среде образуют с сероводородом нерастворимые соединения типа тритиона. Эффективными ингибиторами могут быть также соединения, которые не вступают в химические реакции с сероводородом, но способны вытеснять молекулы и ионы сероводорода с поверхности металла. Очевидно, с последними механизмами следует считаться, поскольку теория Иофа и Ле Буше не в состоянии полностью объяснить механизм торможения ингибиторами анодной реакции ионизации металла. [c.299]

    Однако потенциал ионизации сероводорода составляет 10,46 эв, и длинноволновое поглощение серусодержащих гетероциклов должно вызываться нижележащими сг -орбитами, отражая слабосвязывающий и разрыхляющий характер о- и сг -орбит связи С—S. [c.328]

    Наиболее примечательным является образование иона-радикала с массой 128, которому можно приписать структуру фенилцик-лобутадиена. Соответствующий отрыв гетероатома не наблюдался при диссоциативной ионизации фурана или пиррола, что еще раз подчеркивает уникальность поведения серусодержащих соединений. Этот эффект еще более ярко выражен к масс-спектрах двух дифенилтиофенов и р,р -тиенилтиофене. В случае 2,5-дифенилтио-фена вместо серы отрывается сероводород, в результате образуется конденсированная система, вероятно следующего строения, с массой 202  [c.185]

    Отмечается, что исследованные алкил- и арилмеркаптаны в большей степени тормозят процесс ионизации металла. Зато органические сульфиды и сульфоксиды — эффективные ингибиторы наводороживания без заметной способности тормозить общую коррозию. В известных условиях может иметь место и стимулирующее действие меркаптанов на наводороживание это происходит при образовании из них стимулятора — сероводорода. Аналогичное стимулирующее действие связывается и с распадом тио-мочевины [105] по реакции (NHa)2 S + 6е + H S+ + СНзМНз+ + ЫН [37]. [c.47]

    При получении аналогичных данных для слабокислых растворов (табл. 6) точный расчет обратимого потенциала ионизации железа в несодержащем сероводород растворе оказался невозможным, так как неизвестна точная величина активности ионов железа в растворе (при pH = 5 двухвалентное железо не образует нерастворимых соединений). Было принято, что в этих условиях = I [c.90]

    Красный литературный обзор. Найдено, что насыщенные меркаптаны имеют рКа порядка и, В то время как спирты — порядка 15 (см. разд. УГ,3). Тот факт, что меркаптид-ионы примерно на 4 единицы р/Са менее основны, чем алкокси-ионы, хорошо согласуется с тем, что меркаптаны как основания на 4 единицы слабее, чем спирты. Величинам р/Са ионизации меркаптанов в уравнении Тафта соответствует р = 3,40, однако, как оказалось, сероводород и тиофенол не подчиняются той корреляции, которой подчиняются 11 других меркаптанов, изученных Кривым. Это неудивительно, если учесть различия в сольватации и резонансные факторы. Ряд авторов исследовали константы кислотности тиофенолов и сравнили их с соответствующими константами фенолов. Эти данные рассмотрены в упоминавшейся выше статье. [c.265]


Смотреть страницы где упоминается термин Сероводород, ионизация: [c.7]    [c.29]    [c.317]    [c.396]    [c.276]    [c.4]    [c.140]    [c.194]    [c.591]    [c.195]    [c.239]    [c.115]    [c.88]   
Полумикрометод качественного анализа (1947) -- [ c.21 ]




ПОИСК







© 2025 chem21.info Реклама на сайте